grin/keychain/src/keychain.rs

304 lines
8.9 KiB
Rust
Raw Normal View History

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// Implementation of the Keychain trait based on an extended key derivation
/// scheme.
use rand::{thread_rng, Rng};
use std::collections::HashMap;
use std::sync::{Arc, RwLock};
use blake2;
use extkey;
use types::{BlindSum, BlindingFactor, Error, Identifier, Keychain};
use util::logger::LOGGER;
use util::secp::key::SecretKey;
use util::secp::pedersen::Commitment;
use util::secp::{self, Message, Secp256k1, Signature};
#[derive(Clone, Debug)]
pub struct ExtKeychain {
secp: Secp256k1,
extkey: extkey::ExtendedKey,
key_overrides: HashMap<Identifier, SecretKey>,
key_derivation_cache: Arc<RwLock<HashMap<Identifier, u32>>>,
}
impl Keychain for ExtKeychain {
fn from_seed(seed: &[u8]) -> Result<ExtKeychain, Error> {
let secp = secp::Secp256k1::with_caps(secp::ContextFlag::Commit);
let extkey = extkey::ExtendedKey::from_seed(&secp, seed)?;
let keychain = ExtKeychain {
secp: secp,
extkey: extkey,
key_overrides: HashMap::new(),
key_derivation_cache: Arc::new(RwLock::new(HashMap::new())),
};
Ok(keychain)
}
/// For testing - probably not a good idea to use outside of tests.
fn from_random_seed() -> Result<ExtKeychain, Error> {
let seed: String = thread_rng().gen_ascii_chars().take(16).collect();
let seed = blake2::blake2b::blake2b(32, &[], seed.as_bytes());
ExtKeychain::from_seed(seed.as_bytes())
}
fn root_key_id(&self) -> Identifier {
self.extkey.root_key_id.clone()
}
fn derive_key_id(&self, derivation: u32) -> Result<Identifier, Error> {
let child_key = self.extkey.derive(&self.secp, derivation)?;
Ok(child_key.key_id)
}
fn derived_key(&self, key_id: &Identifier) -> Result<SecretKey, Error> {
// first check our overrides and just return the key if we have one in there
if let Some(key) = self.key_overrides.get(key_id) {
2018-03-04 03:19:54 +03:00
trace!(
LOGGER,
"... Derived Key (using override) key_id: {}",
key_id
);
return Ok(*key);
}
let child_key = self.derived_child_key(key_id)?;
Ok(child_key.key)
}
fn commit(&self, amount: u64, key_id: &Identifier) -> Result<Commitment, Error> {
let skey = self.derived_key(key_id)?;
let commit = self.secp.commit(amount, skey)?;
Ok(commit)
}
fn commit_with_key_index(&self, amount: u64, derivation: u32) -> Result<Commitment, Error> {
let child_key = self.derived_key_from_index(derivation)?;
let commit = self.secp.commit(amount, child_key.key)?;
Ok(commit)
}
fn blind_sum(&self, blind_sum: &BlindSum) -> Result<BlindingFactor, Error> {
let mut pos_keys: Vec<SecretKey> = blind_sum
.positive_key_ids
.iter()
.filter_map(|k| self.derived_key(&k).ok())
.collect();
let mut neg_keys: Vec<SecretKey> = blind_sum
.negative_key_ids
.iter()
.filter_map(|k| self.derived_key(&k).ok())
.collect();
pos_keys.extend(
&blind_sum
.positive_blinding_factors
.iter()
.filter_map(|b| b.secret_key(&self.secp).ok())
.collect::<Vec<SecretKey>>(),
);
neg_keys.extend(
&blind_sum
.negative_blinding_factors
.iter()
.filter_map(|b| b.secret_key(&self.secp).ok())
.collect::<Vec<SecretKey>>(),
);
let sum = self.secp.blind_sum(pos_keys, neg_keys)?;
Ok(BlindingFactor::from_secret_key(sum))
}
fn sign(&self, msg: &Message, key_id: &Identifier) -> Result<Signature, Error> {
let skey = self.derived_key(key_id)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
fn sign_with_blinding(
&self,
msg: &Message,
blinding: &BlindingFactor,
) -> Result<Signature, Error> {
let skey = &blinding.secret_key(&self.secp)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
fn secp(&self) -> &Secp256k1 {
&self.secp
}
}
impl ExtKeychain {
// For tests and burn only, associate a key identifier with a known secret key.
pub fn burn_enabled(keychain: &ExtKeychain, burn_key_id: &Identifier) -> ExtKeychain {
let mut key_overrides = HashMap::new();
key_overrides.insert(
burn_key_id.clone(),
SecretKey::from_slice(&keychain.secp, &[1; 32]).unwrap(),
);
ExtKeychain {
key_overrides: key_overrides,
..keychain.clone()
}
}
fn derived_child_key(&self, key_id: &Identifier) -> Result<extkey::ChildKey, Error> {
trace!(LOGGER, "Derived Key by key_id: {}", key_id);
// then check the derivation cache to see if we have previously derived this key
// if so use the derivation from the cache to derive the key
{
let cache = self.key_derivation_cache.read().unwrap();
if let Some(derivation) = cache.get(key_id) {
2018-03-04 03:19:54 +03:00
trace!(
LOGGER,
"... Derived Key (cache hit) key_id: {}, derivation: {}",
key_id,
derivation
);
return Ok(self.derived_key_from_index(*derivation)?);
}
}
// otherwise iterate over a large number of derivations looking for our key
// cache the resulting derivations by key_id for faster lookup later
// TODO - remove hard limit (within reason)
// TODO - do we benefit here if we track our max known n_child?
{
let mut cache = self.key_derivation_cache.write().unwrap();
for i in 1..100_000 {
let child_key = self.extkey.derive(&self.secp, i)?;
// let child_key_id = extkey.identifier(&self.secp)?;
if !cache.contains_key(&child_key.key_id) {
trace!(
LOGGER,
"... Derived Key (cache miss) key_id: {}, derivation: {}",
child_key.key_id,
child_key.n_child,
);
cache.insert(child_key.key_id.clone(), child_key.n_child);
}
if child_key.key_id == *key_id {
return Ok(child_key);
}
}
}
2018-03-04 03:19:54 +03:00
Err(Error::KeyDerivation(format!(
"failed to derive child_key for {:?}",
key_id
)))
}
// if we know the derivation index we can just straight to deriving the key
2018-03-04 03:19:54 +03:00
fn derived_key_from_index(&self, derivation: u32) -> Result<extkey::ChildKey, Error> {
trace!(LOGGER, "Derived Key (fast) by derivation: {}", derivation);
let child_key = self.extkey.derive(&self.secp, derivation)?;
2018-03-04 03:19:54 +03:00
return Ok(child_key);
}
}
#[cfg(test)]
mod test {
use keychain::ExtKeychain;
use types::{BlindSum, BlindingFactor, Keychain};
use util::secp;
use util::secp::key::SecretKey;
#[test]
fn test_key_derivation() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let secp = keychain.secp();
// use the keychain to derive a "key_id" based on the underlying seed
let key_id = keychain.derive_key_id(1).unwrap();
let msg_bytes = [0; 32];
let msg = secp::Message::from_slice(&msg_bytes[..]).unwrap();
// now create a zero commitment using the key on the keychain associated with
hash (features|commitment) in output mmr (#615) * experiment with lock_heights on outputs * playing around with lock_height as part of the switch commitment hash * cleanup * include features in the switch commit hash key * commit * rebase off master * commit * cleanup * missing docs * rework coinbase maturity test to build valid tx * pool and chain tests passing (inputs have switch commitments) * commit * cleanup * check inputs spending coinbase outputs have valid lock_heights * wip - got it building (tests still failing) * use zero key for non coinbase switch commit hash * fees and height wrong order... * send output lock_height over to wallet via api * no more header by height index workaround this for wallet refresh and wallet restore * refresh heights for unspent wallet outputs where missing * TODO - might be slow? * simplify - do not pass around lock_height for non coinbase outputs * commit * fix tests after merge * build input vs coinbase_input switch commit hash key encodes lock_height cleanup output by commit index (currently broken...) * is_unspent and get_unspent cleanup - we have no outputs, only switch_commit_hashes * separate concept of utxo vs output in the api utxos come from the sumtrees (and only the sumtrees, limited info) outputs come from blocks (and we need to look them up via block height) * cleanup * better api support for block outputs with range proofs * basic wallet operations appear to work restore is not working fully refresh refreshes heights correctly (at least appears to) * wallet refresh and wallet restore appear to be working now * fix core tests * fix some mine_simple_chain tests * fixup chain tests * rework so pool tests pass * wallet restore now safely habndles duplicate commitments (reused wallet keys) for coinbase outputs where lock_height is _very_ important * wip * validate_coinbase_maturity got things building tests are failing * lite vs full versions of is_unspent * builds and working locally zero-conf - what to do here? * handle zero-conf edge case (use latest block) * introduce OutputIdentifier, avoid leaking SumCommit everywhere * fix the bad merge * pool verifies coinbase maturity via is_matured this uses sumtree in a consistent way * cleanup * add docs, cleanup build warnings * fix core tests * fix chain tests * fix pool tests * cleanup debug logging that we no longer need * make out_block optional on an input (only care about it for spending coinbase outputs) * cleanup * bump the build
2018-01-17 06:03:40 +03:00
// the key_id
let commit = keychain.commit(0, &key_id).unwrap();
// now check we can use our key to verify a signature from this zero commitment
let sig = keychain.sign(&msg, &key_id).unwrap();
secp.verify_from_commit(&msg, &sig, &commit).unwrap();
}
// We plan to "offset" the key used in the kernel commitment
// so we are going to be doing some key addition/subtraction.
// This test is mainly to demonstrate that idea that summing commitments
// and summing the keys used to commit to 0 have the same result.
#[test]
fn secret_key_addition() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let skey1 = SecretKey::from_slice(
&keychain.secp,
&[
2018-03-04 03:19:54 +03:00
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1,
],
).unwrap();
let skey2 = SecretKey::from_slice(
&keychain.secp,
&[
2018-03-04 03:19:54 +03:00
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2,
],
).unwrap();
// adding secret keys 1 and 2 to give secret key 3
let mut skey3 = skey1.clone();
let _ = skey3.add_assign(&keychain.secp, &skey2).unwrap();
// create commitments for secret keys 1, 2 and 3
// all committing to the value 0 (which is what we do for tx_kernels)
let commit_1 = keychain.secp.commit(0, skey1).unwrap();
let commit_2 = keychain.secp.commit(0, skey2).unwrap();
let commit_3 = keychain.secp.commit(0, skey3).unwrap();
// now sum commitments for keys 1 and 2
2018-03-04 03:19:54 +03:00
let sum = keychain
.secp
.commit_sum(vec![commit_1.clone(), commit_2.clone()], vec![])
.unwrap();
// confirm the commitment for key 3 matches the sum of the commitments 1 and 2
assert_eq!(sum, commit_3);
// now check we can sum keys up using keychain.blind_sum()
// in the same way (convenience function)
assert_eq!(
2018-03-04 03:19:54 +03:00
keychain
.blind_sum(
&BlindSum::new()
.add_blinding_factor(BlindingFactor::from_secret_key(skey1))
.add_blinding_factor(BlindingFactor::from_secret_key(skey2))
)
2018-03-04 03:19:54 +03:00
.unwrap(),
BlindingFactor::from_secret_key(skey3),
);
}
}