grin/keychain/src/keychain.rs

266 lines
7.7 KiB
Rust
Raw Normal View History

// Copyright 2017 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use rand::{thread_rng, Rng};
use secp;
use secp::{Message, Secp256k1, Signature};
use secp::key::SecretKey;
use secp::pedersen::{Commitment, ProofMessage, ProofInfo, RangeProof};
use blake2;
use blind::{BlindingFactor, BlindSum};
use extkey::{self, Fingerprint, Identifier};
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum Error {
ExtendedKey(extkey::Error),
Secp(secp::Error),
KeyDerivation(String),
}
impl From<secp::Error> for Error {
fn from(e: secp::Error) -> Error {
Error::Secp(e)
}
}
impl From<extkey::Error> for Error {
fn from(e: extkey::Error) -> Error {
Error::ExtendedKey(e)
}
}
#[derive(Clone, Debug)]
pub struct Keychain {
secp: Secp256k1,
extkey: extkey::ExtendedKey,
/// for tests and burn only, associate the zero fingerprint to a known
/// dummy private key
pub enable_burn_key: bool,
}
impl Keychain {
pub fn fingerprint(&self) -> Fingerprint {
self.extkey.fingerprint.clone()
}
pub fn from_seed(seed: &[u8]) -> Result<Keychain, Error> {
let secp = secp::Secp256k1::with_caps(secp::ContextFlag::Commit);
let extkey = extkey::ExtendedKey::from_seed(&secp, seed)?;
let keychain = Keychain {
secp: secp,
extkey: extkey,
enable_burn_key: false,
};
Ok(keychain)
}
/// For testing - probably not a good idea to use outside of tests.
pub fn from_random_seed() -> Result<Keychain, Error> {
let seed: String = thread_rng().gen_ascii_chars().take(16).collect();
let seed = blake2::blake2b::blake2b(32, &[], seed.as_bytes());
Keychain::from_seed(seed.as_bytes())
}
pub fn derive_pubkey(&self, derivation: u32) -> Result<Identifier, Error> {
let extkey = self.extkey.derive(&self.secp, derivation)?;
let pubkey = extkey.identifier(&self.secp)?;
Ok(pubkey)
}
// TODO - this is a work in progress
// TODO - smarter lookups - can we cache key_id/fingerprint -> derivation
// number somehow?
fn derived_key(&self, pubkey: &Identifier) -> Result<SecretKey, Error> {
if self.enable_burn_key {
// for tests and burn only, associate the zero fingerprint to a known
// dummy private key
if pubkey.fingerprint().to_string() == "00000000" {
return Ok(SecretKey::from_slice(&self.secp, &[1; 32])?);
}
}
for i in 1..10000 {
let extkey = self.extkey.derive(&self.secp, i)?;
if extkey.identifier(&self.secp)? == *pubkey {
return Ok(extkey.key);
}
}
Err(Error::KeyDerivation(format!("cannot find extkey for {}", pubkey.fingerprint())))
}
// TODO - clean this and derived_key up, rename them?
// TODO - maybe wallet deals exclusively with pubkeys and not derivations - this leaks?
pub fn derivation_from_pubkey(&self, pubkey: &Identifier) -> Result<u32, Error> {
for i in 1..10000 {
let extkey = self.extkey.derive(&self.secp, i)?;
if extkey.identifier(&self.secp)? == *pubkey {
return Ok(extkey.n_child);
}
}
Err(Error::KeyDerivation(format!("cannot find extkey for {}", pubkey.fingerprint())))
}
pub fn commit(&self, amount: u64, pubkey: &Identifier) -> Result<Commitment, Error> {
let skey = self.derived_key(pubkey)?;
let commit = self.secp.commit(amount, skey)?;
Ok(commit)
}
pub fn switch_commit(&self, pubkey: &Identifier) -> Result<Commitment, Error> {
let skey = self.derived_key(pubkey)?;
let commit = self.secp.switch_commit(skey)?;
Ok(commit)
}
pub fn range_proof(
&self,
amount: u64,
pubkey: &Identifier,
commit: Commitment,
msg: ProofMessage,
) -> Result<RangeProof, Error> {
let skey = self.derived_key(pubkey)?;
let range_proof = self.secp.range_proof(0, amount, skey, commit, msg);
Ok(range_proof)
}
pub fn rewind_range_proof(
&self,
pubkey: &Identifier,
commit: Commitment,
proof: RangeProof,
) -> Result<ProofInfo, Error> {
let nonce = self.derived_key(pubkey)?;
Ok(self.secp.rewind_range_proof(commit, proof, nonce))
}
pub fn blind_sum(&self, blind_sum: &BlindSum) -> Result<BlindingFactor, Error> {
let mut pos_keys: Vec<SecretKey> = blind_sum
.positive_pubkeys
.iter()
.filter_map(|k| self.derived_key(&k).ok())
.collect();
let mut neg_keys: Vec<SecretKey> = blind_sum
.negative_pubkeys
.iter()
.filter_map(|k| self.derived_key(&k).ok())
.collect();
pos_keys.extend(&blind_sum
.positive_blinding_factors
.iter()
.map(|b| b.secret_key())
.collect::<Vec<SecretKey>>());
neg_keys.extend(&blind_sum
.negative_blinding_factors
.iter()
.map(|b| b.secret_key())
.collect::<Vec<SecretKey>>());
let blinding = self.secp.blind_sum(pos_keys, neg_keys)?;
Ok(BlindingFactor::new(blinding))
}
pub fn sign(&self, msg: &Message, pubkey: &Identifier) -> Result<Signature, Error> {
let skey = self.derived_key(pubkey)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
pub fn sign_with_blinding(
&self,
msg: &Message,
blinding: &BlindingFactor,
) -> Result<Signature, Error> {
let sig = self.secp.sign(msg, &blinding.secret_key())?;
Ok(sig)
}
pub fn secp(&self) -> &Secp256k1 {
&self.secp
}
}
#[cfg(test)]
mod test {
use keychain::Keychain;
use secp;
use secp::pedersen::ProofMessage;
#[test]
fn test_key_derivation() {
let secp = secp::Secp256k1::with_caps(secp::ContextFlag::Commit);
let keychain = Keychain::from_random_seed().unwrap();
// use the keychain to derive a "pubkey" based on the underlying seed
let pubkey = keychain.derive_pubkey(1).unwrap();
let msg_bytes = [0; 32];
let msg = secp::Message::from_slice(&msg_bytes[..]).unwrap();
// now create a zero commitment using the key on the keychain associated with
// the pubkey
let commit = keychain.commit(0, &pubkey).unwrap();
// now check we can use our key to verify a signature from this zero commitment
let sig = keychain.sign(&msg, &pubkey).unwrap();
secp.verify_from_commit(&msg, &sig, &commit).unwrap();
}
#[test]
fn test_rewind_range_proof() {
let keychain = Keychain::from_random_seed().unwrap();
let pubkey = keychain.derive_pubkey(1).unwrap();
let commit = keychain.commit(5, &pubkey).unwrap();
let msg = ProofMessage::empty();
let proof = keychain.range_proof(5, &pubkey, commit, msg).unwrap();
let proof_info = keychain.rewind_range_proof(&pubkey, commit, proof).unwrap();
assert_eq!(proof_info.success, true);
assert_eq!(proof_info.value, 5);
// now check the recovered message is "empty" (but not truncated) i.e. all zeroes
assert_eq!(
proof_info.message,
secp::pedersen::ProofMessage::from_bytes(&[0; secp::constants::PROOF_MSG_SIZE])
);
let pubkey2 = keychain.derive_pubkey(2).unwrap();
// cannot rewind with a different nonce
let proof_info = keychain.rewind_range_proof(&pubkey2, commit, proof).unwrap();
assert_eq!(proof_info.success, false);
assert_eq!(proof_info.value, 0);
// cannot rewind with a commitment to the same value using a different key
let commit2 = keychain.commit(5, &pubkey2).unwrap();
let proof_info = keychain.rewind_range_proof(&pubkey, commit2, proof).unwrap();
assert_eq!(proof_info.success, false);
assert_eq!(proof_info.value, 0);
// cannot rewind with a commitment to a different value
let commit3 = keychain.commit(4, &pubkey).unwrap();
let proof_info = keychain.rewind_range_proof(&pubkey, commit3, proof).unwrap();
assert_eq!(proof_info.success, false);
assert_eq!(proof_info.value, 0);
}
}