grin/keychain/src/keychain.rs
Yeastplume 63880f71c7
BIP32 Lib Integration (#1454)
* Test integrating BIP-32 implementation (not complete)

* Test integrating BIP-32 implementation (not complete)

* factor out bip32 crypto functions into trait

* rustfmt

* compliation

* rustfmt

* fixes for test vectors.. all work now with hashes specified in BIP32

* rustfmt

* move reference hasher out of test
2018-09-04 10:58:26 +01:00

303 lines
8.9 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// Implementation of the Keychain trait based on an extended key derivation
/// scheme.
use rand::{thread_rng, Rng};
use std::collections::HashMap;
use std::sync::{Arc, RwLock};
use blake2;
use extkey;
use types::{BlindSum, BlindingFactor, Error, Identifier, Keychain};
use util::logger::LOGGER;
use util::secp::key::SecretKey;
use util::secp::pedersen::Commitment;
use util::secp::{self, Message, Secp256k1, Signature};
#[derive(Clone, Debug)]
pub struct ExtKeychain {
secp: Secp256k1,
extkey: extkey::ExtendedKey,
key_overrides: HashMap<Identifier, SecretKey>,
key_derivation_cache: Arc<RwLock<HashMap<Identifier, u32>>>,
}
impl Keychain for ExtKeychain {
fn from_seed(seed: &[u8]) -> Result<ExtKeychain, Error> {
let secp = secp::Secp256k1::with_caps(secp::ContextFlag::Commit);
let extkey = extkey::ExtendedKey::from_seed(&secp, seed)?;
let keychain = ExtKeychain {
secp: secp,
extkey: extkey,
key_overrides: HashMap::new(),
key_derivation_cache: Arc::new(RwLock::new(HashMap::new())),
};
Ok(keychain)
}
/// For testing - probably not a good idea to use outside of tests.
fn from_random_seed() -> Result<ExtKeychain, Error> {
let seed: String = thread_rng().gen_ascii_chars().take(16).collect();
let seed = blake2::blake2b::blake2b(32, &[], seed.as_bytes());
ExtKeychain::from_seed(seed.as_bytes())
}
fn root_key_id(&self) -> Identifier {
self.extkey.root_key_id.clone()
}
fn derive_key_id(&self, derivation: u32) -> Result<Identifier, Error> {
let child_key = self.extkey.derive(&self.secp, derivation)?;
Ok(child_key.key_id)
}
fn derived_key(&self, key_id: &Identifier) -> Result<SecretKey, Error> {
// first check our overrides and just return the key if we have one in there
if let Some(key) = self.key_overrides.get(key_id) {
trace!(
LOGGER,
"... Derived Key (using override) key_id: {}",
key_id
);
return Ok(*key);
}
let child_key = self.derived_child_key(key_id)?;
Ok(child_key.key)
}
fn commit(&self, amount: u64, key_id: &Identifier) -> Result<Commitment, Error> {
let skey = self.derived_key(key_id)?;
let commit = self.secp.commit(amount, skey)?;
Ok(commit)
}
fn commit_with_key_index(&self, amount: u64, derivation: u32) -> Result<Commitment, Error> {
let child_key = self.derived_key_from_index(derivation)?;
let commit = self.secp.commit(amount, child_key.key)?;
Ok(commit)
}
fn blind_sum(&self, blind_sum: &BlindSum) -> Result<BlindingFactor, Error> {
let mut pos_keys: Vec<SecretKey> = blind_sum
.positive_key_ids
.iter()
.filter_map(|k| self.derived_key(&k).ok())
.collect();
let mut neg_keys: Vec<SecretKey> = blind_sum
.negative_key_ids
.iter()
.filter_map(|k| self.derived_key(&k).ok())
.collect();
pos_keys.extend(
&blind_sum
.positive_blinding_factors
.iter()
.filter_map(|b| b.secret_key(&self.secp).ok())
.collect::<Vec<SecretKey>>(),
);
neg_keys.extend(
&blind_sum
.negative_blinding_factors
.iter()
.filter_map(|b| b.secret_key(&self.secp).ok())
.collect::<Vec<SecretKey>>(),
);
let sum = self.secp.blind_sum(pos_keys, neg_keys)?;
Ok(BlindingFactor::from_secret_key(sum))
}
fn sign(&self, msg: &Message, key_id: &Identifier) -> Result<Signature, Error> {
let skey = self.derived_key(key_id)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
fn sign_with_blinding(
&self,
msg: &Message,
blinding: &BlindingFactor,
) -> Result<Signature, Error> {
let skey = &blinding.secret_key(&self.secp)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
fn secp(&self) -> &Secp256k1 {
&self.secp
}
}
impl ExtKeychain {
// For tests and burn only, associate a key identifier with a known secret key.
pub fn burn_enabled(keychain: &ExtKeychain, burn_key_id: &Identifier) -> ExtKeychain {
let mut key_overrides = HashMap::new();
key_overrides.insert(
burn_key_id.clone(),
SecretKey::from_slice(&keychain.secp, &[1; 32]).unwrap(),
);
ExtKeychain {
key_overrides: key_overrides,
..keychain.clone()
}
}
fn derived_child_key(&self, key_id: &Identifier) -> Result<extkey::ChildKey, Error> {
trace!(LOGGER, "Derived Key by key_id: {}", key_id);
// then check the derivation cache to see if we have previously derived this key
// if so use the derivation from the cache to derive the key
{
let cache = self.key_derivation_cache.read().unwrap();
if let Some(derivation) = cache.get(key_id) {
trace!(
LOGGER,
"... Derived Key (cache hit) key_id: {}, derivation: {}",
key_id,
derivation
);
return Ok(self.derived_key_from_index(*derivation)?);
}
}
// otherwise iterate over a large number of derivations looking for our key
// cache the resulting derivations by key_id for faster lookup later
// TODO - remove hard limit (within reason)
// TODO - do we benefit here if we track our max known n_child?
{
let mut cache = self.key_derivation_cache.write().unwrap();
for i in 1..100_000 {
let child_key = self.extkey.derive(&self.secp, i)?;
// let child_key_id = extkey.identifier(&self.secp)?;
if !cache.contains_key(&child_key.key_id) {
trace!(
LOGGER,
"... Derived Key (cache miss) key_id: {}, derivation: {}",
child_key.key_id,
child_key.n_child,
);
cache.insert(child_key.key_id.clone(), child_key.n_child);
}
if child_key.key_id == *key_id {
return Ok(child_key);
}
}
}
Err(Error::KeyDerivation(format!(
"failed to derive child_key for {:?}",
key_id
)))
}
// if we know the derivation index we can just straight to deriving the key
fn derived_key_from_index(&self, derivation: u32) -> Result<extkey::ChildKey, Error> {
trace!(LOGGER, "Derived Key (fast) by derivation: {}", derivation);
let child_key = self.extkey.derive(&self.secp, derivation)?;
return Ok(child_key);
}
}
#[cfg(test)]
mod test {
use keychain::ExtKeychain;
use types::{BlindSum, BlindingFactor, Keychain};
use util::secp;
use util::secp::key::SecretKey;
#[test]
fn test_key_derivation() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let secp = keychain.secp();
// use the keychain to derive a "key_id" based on the underlying seed
let key_id = keychain.derive_key_id(1).unwrap();
let msg_bytes = [0; 32];
let msg = secp::Message::from_slice(&msg_bytes[..]).unwrap();
// now create a zero commitment using the key on the keychain associated with
// the key_id
let commit = keychain.commit(0, &key_id).unwrap();
// now check we can use our key to verify a signature from this zero commitment
let sig = keychain.sign(&msg, &key_id).unwrap();
secp.verify_from_commit(&msg, &sig, &commit).unwrap();
}
// We plan to "offset" the key used in the kernel commitment
// so we are going to be doing some key addition/subtraction.
// This test is mainly to demonstrate that idea that summing commitments
// and summing the keys used to commit to 0 have the same result.
#[test]
fn secret_key_addition() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let skey1 = SecretKey::from_slice(
&keychain.secp,
&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1,
],
).unwrap();
let skey2 = SecretKey::from_slice(
&keychain.secp,
&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2,
],
).unwrap();
// adding secret keys 1 and 2 to give secret key 3
let mut skey3 = skey1.clone();
let _ = skey3.add_assign(&keychain.secp, &skey2).unwrap();
// create commitments for secret keys 1, 2 and 3
// all committing to the value 0 (which is what we do for tx_kernels)
let commit_1 = keychain.secp.commit(0, skey1).unwrap();
let commit_2 = keychain.secp.commit(0, skey2).unwrap();
let commit_3 = keychain.secp.commit(0, skey3).unwrap();
// now sum commitments for keys 1 and 2
let sum = keychain
.secp
.commit_sum(vec![commit_1.clone(), commit_2.clone()], vec![])
.unwrap();
// confirm the commitment for key 3 matches the sum of the commitments 1 and 2
assert_eq!(sum, commit_3);
// now check we can sum keys up using keychain.blind_sum()
// in the same way (convenience function)
assert_eq!(
keychain
.blind_sum(
&BlindSum::new()
.add_blinding_factor(BlindingFactor::from_secret_key(skey1))
.add_blinding_factor(BlindingFactor::from_secret_key(skey2))
)
.unwrap(),
BlindingFactor::from_secret_key(skey3),
);
}
}