* add md files for translation. * start to translation fast-sync, code_structure. add file build_KR.md, states_KR.md * add dandelion_KR.md && simulation_KR.md for Korean translation. * add md files for translation. * start to translation fast-sync, code_structure. add file build_KR.md, states_KR.md * add dandelion_KR.md && simulation_KR.md for Korean translation. * remove some useless md files for translation. this is rearrange set up translation order. * add dot end of sentence & translate build.md in korean * remove fast-sync_KR.md * finish build_KR.md translation * finish build_KR.md translation * finish translation state_KR.md & add phrase in state.md to move other language md file * translate blocks_and_headers.md && chain_sync.md in Korean * add . in chain_sync.md , translation finished in doc/chain dir. * fix some miss typos * start to translate dandelion.md & simulation.md in Korean. * [WIP] translation * [WIP] files add. * [WIP] dandelion simulation * finish pruning translation * doc/dandelion translation in Korean finish * start to translation mmr, merkle, switch commitment in Korean * [WIP] merkle_KR.md * finish translation mmr.md & merkle.md * delete [WIP]switch_commitment_KR.md * add pow_KR.md for translation * finish translation grin4bitcoiners * fix for merge * fix for merge * fix for merge * , * POW & grin4bitcoiner.md translated in Korean. * fix some typo and cargo.lock
5.1 KiB
Merkle Mountain Ranges
*Read this in other languages:Korean
Structure
Merkle Mountain Ranges [1] are an alternative to Merkle trees [2]. While the latter relies on perfectly balanced binary trees, the former can be seen either as list of perfectly balance binary trees or a single binary tree that would have been truncated from the top right. A Merkle Mountain Range (MMR) is strictly append-only: elements are added from the left to the right, adding a parent as soon as 2 children exist, filling up the range accordingly.
This illustrates a range with 11 inserted leaves and total size 19, where each node is annotated with its order of insertion.
Height
3 14
/ \
/ \
/ \
/ \
2 6 13
/ \ / \
1 2 5 9 12 17
/ \ / \ / \ / \ / \
0 0 1 3 4 7 8 10 11 15 16 18
This can be represented as a flat list, here storing the height of each node at their position of insertion:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 0 0 1 0
This structure can be fully described simply from its size (19). It's also
fairly simple, using fast binary operations, to navigate within a MMR.
Given a node's position n
, we can compute its height, the position of its
parent, its siblings, etc.
Hashing and Bagging
Just like with Merkle trees, parent nodes in a MMR have for value the hash of
their 2 children. Grin uses the Blake2b hash function throughout, and always
prepends the node's position in the MMR before hashing to avoid collisions. So
for a leaf l
at index n
storing data D
(in the case of an output, the
data is its Pedersen commitment, for example), we have:
Node(l) = Blake2b(n | D)
And for any parent p
at index m
:
Node(p) = Blake2b(m | Node(left_child(p)) | Node(right_child(p)))
Contrarily to a Merkle tree, a MMR generally has no single root by construction so we need a method to compute one (otherwise it would defeat the purpose of using a hash tree). This process is called "bagging the peaks" for reasons described in [1].
First, we identify the peaks of the MMR; we will define one method of doing so here. We first write another small example MMR but with the indexes written as binary (instead of decimal), starting from 1:
Height
2 111
/ \
1 11 110 1010
/ \ / \ / \
0 1 10 100 101 1000 1001 1011
This MMR has 11 nodes and its peaks are at position 111 (7), 1010 (10) and
1011 (11). We first notice how the first leftmost peak is always going to be
the highest and always "all ones" when expressed in binary. Therefore that
peak will have a position of the form 2^n - 1
and will always be the
largest such position that is inside the MMR (its position is lesser than the
total size). We process iteratively for a MMR of size 11:
2^0 - 1 = 0, and 0 < 11
2^1 - 1 = 1, and 1 < 11
2^2 - 1 = 3, and 3 < 11
2^3 - 1 = 7, and 7 < 11
2^4 - 1 = 15, and 15 is not < 11
Therefore the first peak is 7. To find the next peak, we then need to "jump" to its right sibling. If that node is not in the MMR (and it won't), take its left child. If that child is not in the MMR either, keep taking its left child until we have a node that exists in our MMR. Once we find that next peak, keep repeating the process until we're at the last node.
All these operations are very simple. Jumping to the right sibling of a node at
height h
is adding 2^(h+1) - 1
to its position. Taking its left sibling is
subtracting 2^h
.
Finally, once all the positions of the peaks are known, "bagging" the peaks consists of hashing them iteratively from the right, using the total size of the MMR as prefix. For a MMR of size N with 3 peaks p1, p2 and p3 we get the final top peak:
P = Blake2b(N | Blake2b(N | Node(p3) | Node(p2)) | Node(p1))
Pruning
In Grin, a lot of the data that gets hashed and stored in MMRs can eventually be removed. As this happens, the presence of some leaf hashes in the corresponding MMRs become unnecessary and their hash can be removed. When enough leaves are removed, the presence of their parents may become unnecessary as well. We can therefore prune a significant part of a MMR from the removal of its leaves.
Pruning a MMR relies on a simple iterative process. X
is first initialized as
the leaf we wish to prune.
- Prune
X
. - If
X
has a sibling, stop here. - If 'X' has no sibling, assign the parent of
X
asX
.
To visualize the result, starting from our first MMR example and removing leaves [0, 3, 4, 8, 16] leads to the following pruned MMR:
Height
3 14
/ \
/ \
/ \
/ \
2 6 13
/ / \
1 2 9 12 17
\ / / \ /
0 1 7 10 11 15 18
[1] Peter Todd, merkle-mountain-range