grin/store/tests/pmmr.rs

771 lines
21 KiB
Rust
Raw Normal View History

// Copyright 2018 The Grin Developers
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
2018-10-18 13:40:58 +03:00
extern crate chrono;
extern crate croaring;
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
extern crate env_logger;
extern crate grin_core as core;
extern crate grin_store as store;
use std::fs;
2018-10-18 13:40:58 +03:00
use chrono::prelude::Utc;
use croaring::Bitmap;
2018-03-04 03:19:54 +03:00
use core::core::pmmr::{Backend, PMMR};
use core::ser::{Error, PMMRIndexHashable, PMMRable, Readable, Reader, Writeable, Writer};
use store::types::prune_noop;
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
#[test]
fn pmmr_append() {
let (data_dir, elems) = setup("append");
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, None).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// adding first set of 4 elements and sync
let mut mmr_size = load(0, &elems[0..4], &mut backend);
backend.sync().unwrap();
// adding the rest and sync again
mmr_size = load(mmr_size, &elems[4..9], &mut backend);
backend.sync().unwrap();
// check the resulting backend store and the computation of the root
let node_hash = elems[0].hash_with_index(0);
assert_eq!(backend.get_hash(1).unwrap(), node_hash);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// 0010012001001230
let pos_0 = elems[0].hash_with_index(0);
let pos_1 = elems[1].hash_with_index(1);
let pos_2 = (pos_0, pos_1).hash_with_index(2);
let pos_3 = elems[2].hash_with_index(3);
let pos_4 = elems[3].hash_with_index(4);
let pos_5 = (pos_3, pos_4).hash_with_index(5);
let pos_6 = (pos_2, pos_5).hash_with_index(6);
let pos_7 = elems[4].hash_with_index(7);
let pos_8 = elems[5].hash_with_index(8);
let pos_9 = (pos_7, pos_8).hash_with_index(9);
let pos_10 = elems[6].hash_with_index(10);
let pos_11 = elems[7].hash_with_index(11);
let pos_12 = (pos_10, pos_11).hash_with_index(12);
let pos_13 = (pos_9, pos_12).hash_with_index(13);
let pos_14 = (pos_6, pos_13).hash_with_index(14);
let pos_15 = elems[8].hash_with_index(15);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
assert_eq!(pmmr.root(), (pos_14, pos_15).hash_with_index(16));
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
teardown(data_dir);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
#[test]
fn pmmr_compact_leaf_sibling() {
let (data_dir, elems) = setup("compact_leaf_sibling");
// setup the mmr store with all elements
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, None).unwrap();
let mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
// On far left of the MMR -
// pos 1 and 2 are leaves (and siblings)
// the parent is pos 3
let (pos_1_hash, pos_2_hash, pos_3_hash) = {
let mut pmmr = PMMR::at(&mut backend, mmr_size);
(
pmmr.get_hash(1).unwrap(),
pmmr.get_hash(2).unwrap(),
pmmr.get_hash(3).unwrap(),
)
};
// prune pos 1
{
let mut pmmr = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1).unwrap();
// prune pos 8 as well to push the remove list past the cutoff
pmmr.prune(8).unwrap();
}
backend.sync().unwrap();
// // check pos 1, 2, 3 are in the state we expect after pruning
{
let pmmr = PMMR::at(&mut backend, mmr_size);
// check that pos 1 is "removed"
assert_eq!(pmmr.get_hash(1), None);
// check that pos 2 and 3 are unchanged
assert_eq!(pmmr.get_hash(2).unwrap(), pos_2_hash);
assert_eq!(pmmr.get_hash(3).unwrap(), pos_3_hash);
}
// check we can still retrieve the "removed" element at pos 1
// from the backend hash file.
assert_eq!(backend.get_from_file(1).unwrap(), pos_1_hash);
// aggressively compact the PMMR files
backend
.check_compact(1, &Bitmap::create(), &prune_noop)
.unwrap();
// check pos 1, 2, 3 are in the state we expect after compacting
{
let pmmr = PMMR::at(&mut backend, mmr_size);
// check that pos 1 is "removed"
assert_eq!(pmmr.get_hash(1), None);
// check that pos 2 and 3 are unchanged
assert_eq!(pmmr.get_hash(2).unwrap(), pos_2_hash);
assert_eq!(pmmr.get_hash(3).unwrap(), pos_3_hash);
}
// Check we can still retrieve the "removed" hash at pos 1 from the hash file.
// It should still be available even after pruning and compacting.
assert_eq!(backend.get_from_file(1).unwrap(), pos_1_hash);
teardown(data_dir);
}
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
#[test]
fn pmmr_prune_compact() {
let (data_dir, elems) = setup("prune_compact");
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// setup the mmr store with all elements
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, None).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
let mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
2017-09-29 21:44:25 +03:00
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// save the root
let root = {
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.root()
};
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// pruning some choice nodes
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1).unwrap();
pmmr.prune(4).unwrap();
pmmr.prune(5).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
backend.sync().unwrap();
// check the root and stored data
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
assert_eq!(root, pmmr.root());
// check we can still retrieve same element from leaf index 2
assert_eq!(pmmr.get_data(2).unwrap(), TestElem(2));
// and the same for leaf index 7
assert_eq!(pmmr.get_data(11).unwrap(), TestElem(7));
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
// compact
backend
.check_compact(2, &Bitmap::create(), &prune_noop)
.unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// recheck the root and stored data
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
assert_eq!(root, pmmr.root());
assert_eq!(pmmr.get_data(2).unwrap(), TestElem(2));
assert_eq!(pmmr.get_data(11).unwrap(), TestElem(7));
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
teardown(data_dir);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
#[test]
fn pmmr_reload() {
let (data_dir, elems) = setup("reload");
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// set everything up with an initial backend
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, None).unwrap();
let mmr_size = load(0, &elems[..], &mut backend);
// retrieve entries from the hash file for comparison later
let pos_3_hash = backend.get_hash(3).unwrap();
let pos_4_hash = backend.get_hash(4).unwrap();
let pos_5_hash = backend.get_hash(5).unwrap();
// save the root
let root = {
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.root()
};
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
backend.sync().unwrap();
2017-09-29 21:44:25 +03:00
// prune a node so we have prune data
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1).unwrap();
}
backend.sync().unwrap();
// now check and compact the backend
backend
.check_compact(1, &Bitmap::create(), &prune_noop)
.unwrap();
backend.sync().unwrap();
// prune another node to force compact to actually do something
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(4).unwrap();
pmmr.prune(2).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
backend.sync().unwrap();
backend
.check_compact(4, &Bitmap::create(), &prune_noop)
.unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
backend.sync().unwrap();
assert_eq!(backend.unpruned_size().unwrap(), mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// prune some more to get rm log data
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(5).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
backend.sync().unwrap();
assert_eq!(backend.unpruned_size().unwrap(), mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
// create a new backend referencing the data files
// and check everything still works as expected
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, None).unwrap();
assert_eq!(backend.unpruned_size().unwrap(), mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
assert_eq!(root, pmmr.root());
}
// pos 1 and pos 2 are both removed (via parent pos 3 in prune list)
assert_eq!(backend.get_hash(1), None);
assert_eq!(backend.get_hash(2), None);
// pos 3 is "removed" but we keep the hash around for root of pruned subtree
assert_eq!(backend.get_hash(3), Some(pos_3_hash));
// pos 4 is removed (via prune list)
assert_eq!(backend.get_hash(4), None);
// pos 5 is removed (via rm_log)
assert_eq!(backend.get_hash(5), None);
// now check contents of the hash file
// pos 1 and pos 2 are no longer in the hash file
assert_eq!(backend.get_from_file(1), None);
assert_eq!(backend.get_from_file(2), None);
// pos 3 is still in there
assert_eq!(backend.get_from_file(3), Some(pos_3_hash));
// pos 4 and pos 5 are also still in there
assert_eq!(backend.get_from_file(4), Some(pos_4_hash));
assert_eq!(backend.get_from_file(5), Some(pos_5_hash));
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
teardown(data_dir);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
2017-10-03 01:32:23 +03:00
#[test]
fn pmmr_rewind() {
let (data_dir, elems) = setup("rewind");
let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), true, None).unwrap();
2017-10-03 01:32:23 +03:00
// adding elements and keeping the corresponding root
let mut mmr_size = load(0, &elems[0..4], &mut backend);
backend.sync().unwrap();
let root1 = {
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.root()
};
2017-10-03 01:32:23 +03:00
mmr_size = load(mmr_size, &elems[4..6], &mut backend);
backend.sync().unwrap();
let root2 = {
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
assert_eq!(pmmr.unpruned_size(), 10);
pmmr.root()
};
2017-10-03 01:32:23 +03:00
mmr_size = load(mmr_size, &elems[6..9], &mut backend);
backend.sync().unwrap();
let root3 = {
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
assert_eq!(pmmr.unpruned_size(), 16);
pmmr.root()
};
2017-10-03 01:32:23 +03:00
// prune the first 4 elements (leaves at pos 1, 2, 4, 5)
2017-10-03 01:32:23 +03:00
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1).unwrap();
pmmr.prune(2).unwrap();
pmmr.prune(4).unwrap();
pmmr.prune(5).unwrap();
2017-10-03 01:32:23 +03:00
}
backend.sync().unwrap();
println!("before compacting - ");
for x in 1..17 {
println!("pos {}, {:?}", x, backend.get_from_file(x));
}
// and compact the MMR to remove the pruned elements
backend
.check_compact(6, &Bitmap::create(), &prune_noop)
.unwrap();
2017-10-03 01:32:23 +03:00
backend.sync().unwrap();
println!("after compacting - ");
for x in 1..17 {
println!("pos {}, {:?}", x, backend.get_from_file(x));
}
println!("root1 {:?}, root2 {:?}, root3 {:?}", root1, root2, root3);
2017-10-03 01:32:23 +03:00
// rewind and check the roots still match
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
2018-10-18 13:40:58 +03:00
pmmr.rewind(9, &Bitmap::of(&vec![11, 12, 16])).unwrap();
assert_eq!(pmmr.unpruned_size(), 10);
// assert_eq!(pmmr.root(), root2);
}
println!("after rewinding - ");
for x in 1..17 {
println!("pos {}, {:?}", x, backend.get_from_file(x));
2017-10-03 01:32:23 +03:00
}
println!("doing a sync after rewinding");
2017-10-03 01:32:23 +03:00
backend.sync().unwrap();
2017-10-03 01:32:23 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, 10);
2017-10-03 01:32:23 +03:00
assert_eq!(pmmr.root(), root2);
}
// Also check the data file looks correct.
// pos 1, 2, 4, 5 are all leaves but these have been pruned.
for pos in vec![1, 2, 4, 5] {
assert_eq!(backend.get_data(pos), None);
}
// pos 3, 6, 7 are non-leaves so we have no data for these
for pos in vec![3, 6, 7] {
assert_eq!(backend.get_data(pos), None);
}
// pos 8 and 9 are both leaves and should be unaffected by prior pruning
for x in 1..16 {
println!("data at {}, {:?}", x, backend.get_data(x));
}
assert_eq!(backend.get_data(8), Some(elems[4]));
assert_eq!(backend.get_hash(8), Some(elems[4].hash_with_index(7)));
assert_eq!(backend.get_data(9), Some(elems[5]));
assert_eq!(backend.get_hash(9), Some(elems[5].hash_with_index(8)));
assert_eq!(backend.data_size().unwrap(), 2);
2017-10-03 01:32:23 +03:00
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, 10);
2018-10-18 13:40:58 +03:00
pmmr.rewind(5, &Bitmap::create()).unwrap();
2017-10-03 01:32:23 +03:00
assert_eq!(pmmr.root(), root1);
}
backend.sync().unwrap();
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, 7);
2017-10-03 01:32:23 +03:00
assert_eq!(pmmr.root(), root1);
}
// also check the data file looks correct
// everything up to and including pos 7 should be pruned from the data file
// but we have rewound to pos 5 so everything after that should be None
for pos in 1..10 {
assert_eq!(backend.get_data(pos), None);
}
// check we have no data in the backend after
// pruning, compacting and rewinding
assert_eq!(backend.data_size().unwrap(), 0);
teardown(data_dir);
2017-10-03 01:32:23 +03:00
}
#[test]
fn pmmr_compact_single_leaves() {
let (data_dir, elems) = setup("compact_single_leaves");
let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), true, None).unwrap();
let mmr_size = load(0, &elems[0..5], &mut backend);
backend.sync().unwrap();
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1).unwrap();
pmmr.prune(4).unwrap();
}
backend.sync().unwrap();
// compact
backend
.check_compact(2, &Bitmap::create(), &prune_noop)
.unwrap();
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(2).unwrap();
pmmr.prune(5).unwrap();
}
backend.sync().unwrap();
// compact
backend
.check_compact(2, &Bitmap::create(), &prune_noop)
.unwrap();
teardown(data_dir);
}
#[test]
fn pmmr_compact_entire_peak() {
let (data_dir, elems) = setup("compact_entire_peak");
let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), true, None).unwrap();
let mmr_size = load(0, &elems[0..5], &mut backend);
backend.sync().unwrap();
let pos_7_hash = backend.get_hash(7).unwrap();
let pos_8 = backend.get_data(8).unwrap();
let pos_8_hash = backend.get_hash(8).unwrap();
// prune all leaves under the peak at pos 7
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1).unwrap();
pmmr.prune(2).unwrap();
pmmr.prune(4).unwrap();
pmmr.prune(5).unwrap();
}
backend.sync().unwrap();
// compact
backend
.check_compact(2, &Bitmap::create(), &prune_noop)
.unwrap();
// now check we have pruned up to and including the peak at pos 7
// hash still available in underlying hash file
assert_eq!(backend.get_hash(7), Some(pos_7_hash));
assert_eq!(backend.get_from_file(7), Some(pos_7_hash));
// now check we still have subsequent hash and data where we expect
assert_eq!(backend.get_data(8), Some(pos_8));
assert_eq!(backend.get_hash(8), Some(pos_8_hash));
assert_eq!(backend.get_from_file(8), Some(pos_8_hash));
teardown(data_dir);
}
#[test]
fn pmmr_compact_horizon() {
let (data_dir, elems) = setup("compact_horizon");
let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), true, None).unwrap();
let mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
// 0010012001001230
// 9 leaves
assert_eq!(backend.data_size().unwrap(), 19);
assert_eq!(backend.hash_size().unwrap(), 35);
let pos_1_hash = backend.get_hash(1).unwrap();
let pos_2_hash = backend.get_hash(2).unwrap();
let pos_3_hash = backend.get_hash(3).unwrap();
let pos_6_hash = backend.get_hash(6).unwrap();
let pos_7_hash = backend.get_hash(7).unwrap();
let pos_8 = backend.get_data(8).unwrap();
let pos_8_hash = backend.get_hash(8).unwrap();
let pos_11 = backend.get_data(11).unwrap();
let pos_11_hash = backend.get_hash(11).unwrap();
{
// pruning some choice nodes
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(4).unwrap();
pmmr.prune(5).unwrap();
pmmr.prune(1).unwrap();
pmmr.prune(2).unwrap();
}
backend.sync().unwrap();
// check we can read hashes and data correctly after pruning
{
// assert_eq!(backend.get_hash(3), None);
assert_eq!(backend.get_from_file(3), Some(pos_3_hash));
// assert_eq!(backend.get_hash(6), None);
assert_eq!(backend.get_from_file(6), Some(pos_6_hash));
// assert_eq!(backend.get_hash(7), None);
assert_eq!(backend.get_from_file(7), Some(pos_7_hash));
assert_eq!(backend.get_hash(8), Some(pos_8_hash));
assert_eq!(backend.get_data(8), Some(pos_8));
assert_eq!(backend.get_from_file(8), Some(pos_8_hash));
assert_eq!(backend.get_hash(11), Some(pos_11_hash));
assert_eq!(backend.get_data(11), Some(pos_11));
assert_eq!(backend.get_from_file(11), Some(pos_11_hash));
}
// compact
backend
.check_compact(4, &Bitmap::of(&vec![1, 2]), &prune_noop)
.unwrap();
backend.sync().unwrap();
// check we can read a hash by pos correctly after compaction
{
assert_eq!(backend.get_hash(1), None);
assert_eq!(backend.get_from_file(1), Some(pos_1_hash));
assert_eq!(backend.get_hash(2), None);
assert_eq!(backend.get_from_file(2), Some(pos_2_hash));
assert_eq!(backend.get_hash(3), Some(pos_3_hash));
assert_eq!(backend.get_hash(4), None);
assert_eq!(backend.get_hash(5), None);
assert_eq!(backend.get_hash(6), Some(pos_6_hash));
assert_eq!(backend.get_from_file(7), Some(pos_7_hash));
assert_eq!(backend.get_hash(8), Some(pos_8_hash));
assert_eq!(backend.get_from_file(8), Some(pos_8_hash));
}
}
// recheck stored data
{
// recreate backend
let backend =
store::pmmr::PMMRBackend::<TestElem>::new(data_dir.to_string(), true, None).unwrap();
assert_eq!(backend.data_size().unwrap(), 19);
assert_eq!(backend.hash_size().unwrap(), 35);
// check we can read a hash by pos correctly from recreated backend
assert_eq!(backend.get_hash(7), Some(pos_7_hash));
assert_eq!(backend.get_from_file(7), Some(pos_7_hash));
assert_eq!(backend.get_hash(8), Some(pos_8_hash));
assert_eq!(backend.get_from_file(8), Some(pos_8_hash));
}
{
let mut backend =
store::pmmr::PMMRBackend::<TestElem>::new(data_dir.to_string(), true, None).unwrap();
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(8).unwrap();
pmmr.prune(9).unwrap();
}
2018-03-04 03:19:54 +03:00
// compact some more
backend
.check_compact(9, &Bitmap::create(), &prune_noop)
.unwrap();
}
// recheck stored data
{
// recreate backend
let backend =
store::pmmr::PMMRBackend::<TestElem>::new(data_dir.to_string(), true, None).unwrap();
// 0010012001001230
assert_eq!(backend.data_size().unwrap(), 13);
assert_eq!(backend.hash_size().unwrap(), 27);
// check we can read a hash by pos correctly from recreated backend
// get_hash() and get_from_file() should return the same value
// and we only store leaves in the rm_log so pos 7 still has a hash in there
assert_eq!(backend.get_hash(7), Some(pos_7_hash));
assert_eq!(backend.get_from_file(7), Some(pos_7_hash));
assert_eq!(backend.get_hash(11), Some(pos_11_hash));
assert_eq!(backend.get_data(11), Some(pos_11));
assert_eq!(backend.get_from_file(11), Some(pos_11_hash));
}
teardown(data_dir);
}
#[test]
fn compact_twice() {
let (data_dir, elems) = setup("compact_twice");
// setup the mmr store with all elements
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), true, None).unwrap();
let mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
// save the root
let root = {
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.root()
};
// pruning some choice nodes
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1).unwrap();
pmmr.prune(2).unwrap();
pmmr.prune(4).unwrap();
}
backend.sync().unwrap();
// check the root and stored data
{
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
assert_eq!(root, pmmr.root());
assert_eq!(pmmr.get_data(5).unwrap(), TestElem(4));
assert_eq!(pmmr.get_data(11).unwrap(), TestElem(7));
}
// compact
backend
.check_compact(2, &Bitmap::create(), &prune_noop)
.unwrap();
// recheck the root and stored data
{
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
assert_eq!(root, pmmr.root());
assert_eq!(pmmr.get_data(5).unwrap(), TestElem(4));
assert_eq!(pmmr.get_data(11).unwrap(), TestElem(7));
}
// now prune some more nodes
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(5).unwrap();
pmmr.prune(8).unwrap();
pmmr.prune(9).unwrap();
}
backend.sync().unwrap();
// recheck the root and stored data
{
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
assert_eq!(root, pmmr.root());
assert_eq!(pmmr.get_data(11).unwrap(), TestElem(7));
}
// compact
backend
.check_compact(2, &Bitmap::create(), &prune_noop)
.unwrap();
// recheck the root and stored data
{
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
assert_eq!(root, pmmr.root());
assert_eq!(pmmr.get_data(11).unwrap(), TestElem(7));
}
teardown(data_dir);
}
fn setup(tag: &str) -> (String, Vec<TestElem>) {
match env_logger::try_init() {
Ok(_) => println!("Initializing env logger"),
Err(e) => println!("env logger already initialized: {:?}", e),
};
let t = Utc::now();
2018-10-18 13:40:58 +03:00
let data_dir = format!(
"./target/tmp/{}.{}-{}",
t.timestamp(),
t.timestamp_subsec_nanos(),
tag
);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
fs::create_dir_all(data_dir.clone()).unwrap();
let mut elems = vec![];
for x in 1..20 {
elems.push(TestElem(x));
}
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
(data_dir, elems)
}
fn teardown(data_dir: String) {
fs::remove_dir_all(data_dir).unwrap();
}
fn load(pos: u64, elems: &[TestElem], backend: &mut store::pmmr::PMMRBackend<TestElem>) -> u64 {
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
let mut pmmr = PMMR::at(backend, pos);
for elem in elems {
pmmr.push(elem.clone()).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
pmmr.unpruned_size()
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct TestElem(u32);
impl PMMRable for TestElem {
fn len() -> usize {
4
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
}
impl Writeable for TestElem {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_u32(self.0)
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
}
impl Readable for TestElem {
fn read(reader: &mut Reader) -> Result<TestElem, Error> {
Ok(TestElem(reader.read_u32()?))
}
}