grin/store/tests/pmmr.rs

340 lines
8.8 KiB
Rust
Raw Normal View History

// Copyright 2018 The Grin Developers
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
extern crate env_logger;
extern crate grin_core as core;
extern crate grin_store as store;
extern crate time;
use std::fs;
use core::ser::*;
2018-03-04 03:19:54 +03:00
use core::core::pmmr::{Backend, PMMR};
use core::core::hash::{Hash, Hashed};
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
#[test]
fn pmmr_append() {
let (data_dir, elems) = setup("append");
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// adding first set of 4 elements and sync
let mut mmr_size = load(0, &elems[0..4], &mut backend);
backend.sync().unwrap();
// adding the rest and sync again
mmr_size = load(mmr_size, &elems[4..9], &mut backend);
backend.sync().unwrap();
// check the resulting backend store and the computation of the root
let node_hash = elems[0].hash_with_index(1);
2018-03-04 03:19:54 +03:00
assert_eq!(backend.get(1, false).expect("").0, node_hash);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
let sum2 = elems[0].hash_with_index(1) + elems[1].hash_with_index(2);
let sum4 = sum2 + (elems[2].hash_with_index(4) + elems[3].hash_with_index(5));
let sum8 = sum4 + ((elems[4].hash_with_index(8) + elems[5].hash_with_index(9))
+ (elems[6].hash_with_index(11) + elems[7].hash_with_index(12)));
let sum9 = sum8 + elems[8].hash_with_index(16);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
assert_eq!(pmmr.root(), sum9);
}
teardown(data_dir);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
#[test]
fn pmmr_prune_compact() {
let (data_dir, elems) = setup("prune_compact");
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// setup the mmr store with all elements
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
let mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
2017-09-29 21:44:25 +03:00
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// save the root
let root: Hash;
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
root = pmmr.root();
}
// pruning some choice nodes
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1, 1).unwrap();
pmmr.prune(4, 1).unwrap();
pmmr.prune(5, 1).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
backend.sync().unwrap();
// check the root and stored data
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
assert_eq!(root, pmmr.root());
// check we can still retrieve same element from leaf index 2
2018-03-04 03:19:54 +03:00
assert_eq!(
pmmr.get(2, true).unwrap().1.unwrap(),
TestElem([0, 0, 0, 2])
);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
// compact
backend.check_compact(2, 2).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// recheck the root and stored data
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
assert_eq!(root, pmmr.root());
2018-03-04 03:19:54 +03:00
assert_eq!(
pmmr.get(2, true).unwrap().1.unwrap(),
TestElem([0, 0, 0, 2])
);
assert_eq!(
pmmr.get(11, true).unwrap().1.unwrap(),
TestElem([0, 0, 0, 7])
);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
teardown(data_dir);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
#[test]
fn pmmr_reload() {
let (data_dir, elems) = setup("reload");
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// set everything up with a first backend
let mmr_size: u64;
let root: Hash;
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
2017-09-29 21:44:25 +03:00
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// save the root and prune some nodes so we have prune data
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.dump(false);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
root = pmmr.root();
pmmr.prune(1, 1).unwrap();
pmmr.prune(4, 1).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
backend.sync().unwrap();
backend.check_compact(1, 2).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
backend.sync().unwrap();
assert_eq!(backend.unpruned_size().unwrap(), mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// prune some more to get rm log data
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(5, 1).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
backend.sync().unwrap();
assert_eq!(backend.unpruned_size().unwrap(), mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
// create a new backend and check everything is kosher
{
2018-03-04 03:19:54 +03:00
let mut backend: store::pmmr::PMMRBackend<TestElem> =
store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap();
assert_eq!(backend.unpruned_size().unwrap(), mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
assert_eq!(root, pmmr.root());
}
assert_eq!(backend.get(5, false), None);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
teardown(data_dir);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
2017-10-03 01:32:23 +03:00
#[test]
fn pmmr_rewind() {
let (data_dir, elems) = setup("rewind");
let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), None).unwrap();
2017-10-03 01:32:23 +03:00
// adding elements and keeping the corresponding root
let mut mmr_size = load(0, &elems[0..4], &mut backend);
backend.sync().unwrap();
let root1: Hash;
2017-10-03 01:32:23 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
2017-10-03 01:32:23 +03:00
root1 = pmmr.root();
}
mmr_size = load(mmr_size, &elems[4..6], &mut backend);
backend.sync().unwrap();
let root2: Hash;
2017-10-03 01:32:23 +03:00
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
2017-10-03 01:32:23 +03:00
root2 = pmmr.root();
}
mmr_size = load(mmr_size, &elems[6..9], &mut backend);
backend.sync().unwrap();
// prune and compact the 2 first elements to spice things up
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
2017-10-03 01:32:23 +03:00
pmmr.prune(1, 1).unwrap();
pmmr.prune(2, 1).unwrap();
}
backend.check_compact(1, 2).unwrap();
2017-10-03 01:32:23 +03:00
backend.sync().unwrap();
2017-10-03 01:32:23 +03:00
// rewind and check the roots still match
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
2017-10-03 01:32:23 +03:00
pmmr.rewind(9, 3).unwrap();
assert_eq!(pmmr.root(), root2);
}
backend.sync().unwrap();
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, 10);
2017-10-03 01:32:23 +03:00
assert_eq!(pmmr.root(), root2);
}
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, 10);
2017-10-03 01:32:23 +03:00
pmmr.rewind(5, 3).unwrap();
assert_eq!(pmmr.root(), root1);
}
backend.sync().unwrap();
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, 7);
2017-10-03 01:32:23 +03:00
assert_eq!(pmmr.root(), root1);
}
teardown(data_dir);
2017-10-03 01:32:23 +03:00
}
#[test]
fn pmmr_compact_horizon() {
let (data_dir, elems) = setup("compact_horizon");
let root: Hash;
{
// setup the mmr store with all elements
let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap();
let mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
// save the root
{
2018-03-04 03:19:54 +03:00
let pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
root = pmmr.root();
}
// pruning some choice nodes with an increasing block height
{
2018-03-04 03:19:54 +03:00
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1, 1).unwrap();
pmmr.prune(2, 2).unwrap();
pmmr.prune(4, 3).unwrap();
pmmr.prune(5, 4).unwrap();
}
backend.sync().unwrap();
// compact
backend.check_compact(2, 3).unwrap();
}
// recheck stored data
{
// recreate backend
2018-03-04 03:19:54 +03:00
let mut backend =
store::pmmr::PMMRBackend::<TestElem>::new(data_dir.to_string(), None).unwrap();
// 9 elements total, minus 2 compacted
assert_eq!(backend.data_size().unwrap(), 7);
// 15 nodes total, 2 pruned and compacted
assert_eq!(backend.hash_size().unwrap(), 13);
2018-03-04 03:19:54 +03:00
// compact some more
backend.check_compact(1, 5).unwrap();
}
// recheck stored data
{
// recreate backend
2018-03-04 03:19:54 +03:00
let backend =
store::pmmr::PMMRBackend::<TestElem>::new(data_dir.to_string(), None).unwrap();
// 9 elements total, minus 4 compacted
assert_eq!(backend.data_size().unwrap(), 5);
// 15 nodes total, 6 pruned and compacted
assert_eq!(backend.hash_size().unwrap(), 9);
}
teardown(data_dir);
}
fn setup(tag: &str) -> (String, Vec<TestElem>) {
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
let _ = env_logger::init();
let t = time::get_time();
let data_dir = format!("./target/{}.{}-{}", t.sec, t.nsec, tag);
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
fs::create_dir_all(data_dir.clone()).unwrap();
let elems = vec![
TestElem([0, 0, 0, 1]),
TestElem([0, 0, 0, 2]),
TestElem([0, 0, 0, 3]),
TestElem([0, 0, 0, 4]),
TestElem([0, 0, 0, 5]),
TestElem([0, 0, 0, 6]),
TestElem([0, 0, 0, 7]),
TestElem([0, 0, 0, 8]),
TestElem([1, 0, 0, 0]),
];
(data_dir, elems)
}
fn teardown(data_dir: String) {
fs::remove_dir_all(data_dir).unwrap();
}
fn load(pos: u64, elems: &[TestElem], backend: &mut store::pmmr::PMMRBackend<TestElem>) -> u64 {
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
let mut pmmr = PMMR::at(backend, pos);
for elem in elems {
pmmr.push(elem.clone()).unwrap();
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
pmmr.unpruned_size()
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct TestElem([u32; 4]);
impl PMMRable for TestElem {
fn len() -> usize {
16
Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
}
}
impl Writeable for TestElem {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
try!(writer.write_u32(self.0[0]));
try!(writer.write_u32(self.0[1]));
try!(writer.write_u32(self.0[2]));
writer.write_u32(self.0[3])
}
}
impl Readable for TestElem {
fn read(reader: &mut Reader) -> Result<TestElem, Error> {
2018-03-04 03:19:54 +03:00
Ok(TestElem([
reader.read_u32()?,
reader.read_u32()?,
reader.read_u32()?,
reader.read_u32()?,
]))
}
}