grin/store/src/pmmr.rs

521 lines
15 KiB
Rust
Raw Normal View History

// Copyright 2018 The Grin Developers
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of the persistent Backend for the prunable MMR tree.
use std::{fs, io, marker};
use croaring::Bitmap;
use core::core::hash::{Hash, Hashed};
use core::core::pmmr::{self, family, Backend, HashOnlyBackend};
use core::core::BlockHeader;
use core::ser::{self, PMMRable};
use leaf_set::LeafSet;
use prune_list::PruneList;
use types::{prune_noop, AppendOnlyFile, HashFile};
2018-11-01 14:34:47 +03:00
const PMMR_HASH_FILE: &str = "pmmr_hash.bin";
const PMMR_DATA_FILE: &str = "pmmr_data.bin";
const PMMR_LEAF_FILE: &str = "pmmr_leaf.bin";
const PMMR_PRUN_FILE: &str = "pmmr_prun.bin";
/// The list of PMMR_Files for internal purposes
pub const PMMR_FILES: [&str; 4] = [
PMMR_HASH_FILE,
PMMR_DATA_FILE,
PMMR_LEAF_FILE,
PMMR_PRUN_FILE,
];
/// PMMR persistent backend implementation. Relies on multiple facilities to
/// handle writing, reading and pruning.
///
/// * A main storage file appends Hash instances as they come.
/// This AppendOnlyFile is also backed by a mmap for reads.
/// * An in-memory backend buffers the latest batch of writes to ensure the
/// PMMR can always read recent values even if they haven't been flushed to
/// disk yet.
/// * A leaf_set tracks unpruned (unremoved) leaf positions in the MMR..
/// * A prune_list tracks the positions of pruned (and compacted) roots in the
/// MMR.
pub struct PMMRBackend<T>
where
T: PMMRable,
{
data_dir: String,
prunable: bool,
hash_file: AppendOnlyFile,
data_file: AppendOnlyFile,
leaf_set: LeafSet,
prune_list: PruneList,
_marker: marker::PhantomData<T>,
}
impl<T> Backend<T> for PMMRBackend<T>
where
T: PMMRable + ::std::fmt::Debug,
{
/// Append the provided data and hashes to the backend storage.
/// Add the new leaf pos to our leaf_set if this is a prunable MMR.
#[allow(unused_variables)]
fn append(&mut self, data: T, hashes: Vec<Hash>) -> Result<(), String> {
if self.prunable {
let record_len = Hash::SIZE as u64;
let shift = self.prune_list.get_total_shift();
let position = (self.hash_file.size_unsync() / record_len) + shift + 1;
self.leaf_set.add(position);
}
self.data_file.append(&mut ser::ser_vec(&data).unwrap());
2018-11-01 14:34:47 +03:00
for h in &hashes {
self.hash_file.append(&mut ser::ser_vec(h).unwrap());
}
Ok(())
}
fn get_from_file(&self, position: u64) -> Option<Hash> {
if self.is_compacted(position) {
return None;
}
let shift = self.prune_list.get_shift(position);
// Read PMMR
// The MMR starts at 1, our binary backend starts at 0
let pos = position - 1;
// Must be on disk, doing a read at the correct position
let hash_record_len = Hash::SIZE;
let file_offset = ((pos - shift) as usize) * hash_record_len;
let data = self.hash_file.read(file_offset, hash_record_len);
match ser::deserialize(&mut &data[..]) {
Ok(h) => Some(h),
Err(e) => {
error!(
"Corrupted storage, could not read an entry from hash store: {:?}",
e
);
2018-11-01 14:34:47 +03:00
None
}
}
}
fn get_data_from_file(&self, position: u64) -> Option<T> {
if self.is_compacted(position) {
return None;
}
let shift = self.prune_list.get_leaf_shift(position);
let pos = pmmr::n_leaves(position) - 1;
// Must be on disk, doing a read at the correct position
let record_len = T::len();
let file_offset = ((pos - shift) as usize) * record_len;
let data = self.data_file.read(file_offset, record_len);
match ser::deserialize(&mut &data[..]) {
Ok(h) => Some(h),
Err(e) => {
error!(
"Corrupted storage, could not read an entry from data store: {:?}",
e
);
2018-11-01 14:34:47 +03:00
None
}
}
}
/// Get the hash at pos.
/// Return None if pos is a leaf and it has been removed (or pruned or
/// compacted).
fn get_hash(&self, pos: u64) -> Option<(Hash)> {
if self.prunable && pmmr::is_leaf(pos) && !self.leaf_set.includes(pos) {
return None;
}
self.get_from_file(pos)
}
/// Get the data at pos.
/// Return None if it has been removed or if pos is not a leaf node.
fn get_data(&self, pos: u64) -> Option<(T)> {
if !pmmr::is_leaf(pos) {
return None;
}
if self.prunable && !self.leaf_set.includes(pos) {
return None;
}
self.get_data_from_file(pos)
}
/// Rewind the PMMR backend to the given position.
fn rewind(&mut self, position: u64, rewind_rm_pos: &Bitmap) -> Result<(), String> {
// First rewind the leaf_set with the necessary added and removed positions.
if self.prunable {
self.leaf_set.rewind(position, rewind_rm_pos);
}
// Rewind the hash file accounting for pruned/compacted pos
let shift = self.prune_list.get_shift(position);
let record_len = Hash::SIZE as u64;
let file_pos = (position - shift) * record_len;
self.hash_file.rewind(file_pos);
// Rewind the data file accounting for pruned/compacted pos
let leaf_shift = self.prune_list.get_leaf_shift(position);
let flatfile_pos = pmmr::n_leaves(position);
let record_len = T::len() as u64;
let file_pos = (flatfile_pos - leaf_shift) * record_len;
self.data_file.rewind(file_pos);
Ok(())
}
/// Remove by insertion position.
fn remove(&mut self, pos: u64) -> Result<(), String> {
assert!(self.prunable, "Remove on non-prunable MMR");
self.leaf_set.remove(pos);
Ok(())
}
/// Return data file path
fn get_data_file_path(&self) -> String {
self.data_file.path()
}
fn snapshot(&self, header: &BlockHeader) -> Result<(), String> {
self.leaf_set
.snapshot(header)
.map_err(|_| format!("Failed to save copy of leaf_set for {}", header.hash()))?;
Ok(())
}
fn dump_stats(&self) {
debug!(
"pmmr backend: unpruned: {}, hashes: {}, data: {}, leaf_set: {}, prune_list: {}",
self.unpruned_size().unwrap_or(0),
self.hash_size().unwrap_or(0),
self.data_size().unwrap_or(0),
self.leaf_set.len(),
self.prune_list.len(),
);
}
}
impl<T> PMMRBackend<T>
where
T: PMMRable + ::std::fmt::Debug,
{
/// Instantiates a new PMMR backend.
/// Use the provided dir to store its files.
pub fn new(
data_dir: String,
prunable: bool,
header: Option<&BlockHeader>,
) -> io::Result<PMMRBackend<T>> {
2018-11-01 14:34:47 +03:00
let hash_file = AppendOnlyFile::open(&format!("{}/{}", data_dir, PMMR_HASH_FILE))?;
let data_file = AppendOnlyFile::open(&format!("{}/{}", data_dir, PMMR_DATA_FILE))?;
let leaf_set_path = format!("{}/{}", data_dir, PMMR_LEAF_FILE);
// If we received a rewound "snapshot" leaf_set file move it into
// place so we use it.
if let Some(header) = header {
let leaf_snapshot_path = format!("{}/{}.{}", data_dir, PMMR_LEAF_FILE, header.hash());
2018-11-01 14:34:47 +03:00
LeafSet::copy_snapshot(&leaf_set_path, &leaf_snapshot_path)?;
}
2018-11-01 14:34:47 +03:00
let leaf_set = LeafSet::open(&leaf_set_path)?;
let prune_list = PruneList::open(&format!("{}/{}", data_dir, PMMR_PRUN_FILE))?;
Ok(PMMRBackend {
data_dir,
prunable,
hash_file,
data_file,
leaf_set,
prune_list,
_marker: marker::PhantomData,
})
}
fn is_pruned(&self, pos: u64) -> bool {
self.prune_list.is_pruned(pos)
}
fn is_pruned_root(&self, pos: u64) -> bool {
self.prune_list.is_pruned_root(pos)
}
fn is_compacted(&self, pos: u64) -> bool {
self.is_pruned(pos) && !self.is_pruned_root(pos)
}
/// Number of elements in the PMMR stored by this backend. Only produces the
/// fully sync'd size.
pub fn unpruned_size(&self) -> io::Result<u64> {
let total_shift = self.prune_list.get_total_shift();
let record_len = Hash::SIZE as u64;
let sz = self.hash_file.size()?;
Ok(sz / record_len + total_shift)
}
/// Number of elements in the underlying stored data. Extremely dependent on
/// pruning and compaction.
pub fn data_size(&self) -> io::Result<u64> {
let record_len = T::len() as u64;
self.data_file.size().map(|sz| sz / record_len)
}
/// Size of the underlying hashed data. Extremely dependent on pruning
/// and compaction.
pub fn hash_size(&self) -> io::Result<u64> {
self.hash_file.size().map(|sz| sz / Hash::SIZE as u64)
}
/// Syncs all files to disk. A call to sync is required to ensure all the
/// data has been successfully written to disk.
pub fn sync(&mut self) -> io::Result<()> {
if let Err(e) = self.hash_file.flush() {
return Err(io::Error::new(
2018-03-04 03:19:54 +03:00
io::ErrorKind::Interrupted,
format!("Could not write to log hash storage, disk full? {:?}", e),
));
}
if let Err(e) = self.data_file.flush() {
return Err(io::Error::new(
2018-03-04 03:19:54 +03:00
io::ErrorKind::Interrupted,
format!("Could not write to log data storage, disk full? {:?}", e),
));
}
// Flush the leaf_set to disk.
self.leaf_set.flush()?;
Ok(())
}
/// Discard the current, non synced state of the backend.
pub fn discard(&mut self) {
self.hash_file.discard();
self.leaf_set.discard();
self.data_file.discard();
}
/// Return the data file path
pub fn data_file_path(&self) -> String {
self.get_data_file_path()
}
/// Takes the leaf_set at a given cutoff_pos and generates an updated
/// prune_list. Saves the updated prune_list to disk
/// Compacts the hash and data files based on the prune_list and saves both
/// to disk.
///
/// A cutoff position limits compaction on recent data.
/// This will be the last position of a particular block
/// to keep things aligned.
/// The block_marker in the db/index for the particular block
/// will have a suitable output_pos.
/// This is used to enforce a horizon after which the local node
/// should have all the data to allow rewinding.
pub fn check_compact<P>(
&mut self,
cutoff_pos: u64,
rewind_rm_pos: &Bitmap,
prune_cb: P,
) -> io::Result<bool>
where
P: Fn(&[u8]),
{
assert!(self.prunable, "Trying to compact a non-prunable PMMR");
// Paths for tmp hash and data files.
let tmp_prune_file_hash = format!("{}/{}.hashprune", self.data_dir, PMMR_HASH_FILE);
let tmp_prune_file_data = format!("{}/{}.dataprune", self.data_dir, PMMR_DATA_FILE);
// Calculate the sets of leaf positions and node positions to remove based
// on the cutoff_pos provided.
let (leaves_removed, pos_to_rm) = self.pos_to_rm(cutoff_pos, rewind_rm_pos);
// 1. Save compact copy of the hash file, skipping removed data.
{
let record_len = Hash::SIZE as u64;
let off_to_rm = map_vec!(pos_to_rm, |pos| {
let shift = self.prune_list.get_shift(pos.into());
((pos as u64) - 1 - shift) * record_len
});
self.hash_file.save_prune(
tmp_prune_file_hash.clone(),
2018-11-01 14:34:47 +03:00
&off_to_rm,
record_len,
&prune_noop,
)?;
}
// 2. Save compact copy of the data file, skipping removed leaves.
{
let record_len = T::len() as u64;
let leaf_pos_to_rm = pos_to_rm
.iter()
.filter(|&x| pmmr::is_leaf(x.into()))
.map(|x| x as u64)
.collect::<Vec<_>>();
let off_to_rm = map_vec!(leaf_pos_to_rm, |&pos| {
let flat_pos = pmmr::n_leaves(pos);
let shift = self.prune_list.get_leaf_shift(pos);
(flat_pos - 1 - shift) * record_len
});
self.data_file.save_prune(
tmp_prune_file_data.clone(),
2018-11-01 14:34:47 +03:00
&off_to_rm,
record_len,
prune_cb,
)?;
}
// 3. Update the prune list and write to disk.
{
for pos in leaves_removed.iter() {
self.prune_list.add(pos.into());
}
self.prune_list.flush()?;
}
// 4. Rename the compact copy of hash file and reopen it.
fs::rename(
tmp_prune_file_hash.clone(),
format!("{}/{}", self.data_dir, PMMR_HASH_FILE),
)?;
2018-11-01 14:34:47 +03:00
self.hash_file = AppendOnlyFile::open(&format!("{}/{}", self.data_dir, PMMR_HASH_FILE))?;
// 5. Rename the compact copy of the data file and reopen it.
fs::rename(
tmp_prune_file_data.clone(),
format!("{}/{}", self.data_dir, PMMR_DATA_FILE),
)?;
2018-11-01 14:34:47 +03:00
self.data_file = AppendOnlyFile::open(&format!("{}/{}", self.data_dir, PMMR_DATA_FILE))?;
// 6. Write the leaf_set to disk.
// Optimize the bitmap storage in the process.
self.leaf_set.flush()?;
Ok(true)
}
fn pos_to_rm(&self, cutoff_pos: u64, rewind_rm_pos: &Bitmap) -> (Bitmap, Bitmap) {
let mut expanded = Bitmap::create();
let leaf_pos_to_rm =
self.leaf_set
.removed_pre_cutoff(cutoff_pos, rewind_rm_pos, &self.prune_list);
for x in leaf_pos_to_rm.iter() {
expanded.add(x);
let mut current = x as u64;
loop {
let (parent, sibling) = family(current);
let sibling_pruned = self.is_pruned_root(sibling);
// if sibling previously pruned
// push it back onto list of pos to remove
// so we can remove it and traverse up to parent
if sibling_pruned {
expanded.add(sibling as u32);
}
if sibling_pruned || expanded.contains(sibling as u32) {
expanded.add(parent as u32);
current = parent;
} else {
break;
}
}
}
2018-11-01 14:34:47 +03:00
(leaf_pos_to_rm, removed_excl_roots(&expanded))
}
}
/// Simple MMR Backend for hashes only (data maintained in the db).
pub struct HashOnlyMMRBackend {
/// The hash file underlying this MMR backend.
hash_file: HashFile,
}
impl HashOnlyBackend for HashOnlyMMRBackend {
fn append(&mut self, hashes: Vec<Hash>) -> Result<(), String> {
2018-11-01 14:34:47 +03:00
for h in &hashes {
self.hash_file
.append(h)
.map_err(|e| format!("Failed to append to backend, {:?}", e))?;
}
Ok(())
}
fn rewind(&mut self, position: u64) -> Result<(), String> {
self.hash_file
.rewind(position)
.map_err(|e| format!("Failed to rewind backend, {:?}", e))?;
Ok(())
}
fn get_hash(&self, position: u64) -> Option<Hash> {
self.hash_file.read(position)
}
}
impl HashOnlyMMRBackend {
/// Instantiates a new PMMR backend.
/// Use the provided dir to store its files.
2018-11-01 14:34:47 +03:00
pub fn new(data_dir: &str) -> io::Result<HashOnlyMMRBackend> {
let hash_file = HashFile::open(&format!("{}/{}", data_dir, PMMR_HASH_FILE))?;
Ok(HashOnlyMMRBackend { hash_file })
}
/// The unpruned size of this MMR backend.
pub fn unpruned_size(&self) -> io::Result<u64> {
let sz = self.hash_file.size()?;
Ok(sz / Hash::SIZE as u64)
}
/// Discard any pending changes to this MMR backend.
pub fn discard(&mut self) {
self.hash_file.discard();
}
/// Sync pending changes to the backend file on disk.
pub fn sync(&mut self) -> io::Result<()> {
if let Err(e) = self.hash_file.flush() {
return Err(io::Error::new(
io::ErrorKind::Interrupted,
format!("Could not write to hash storage, disk full? {:?}", e),
));
}
Ok(())
}
}
/// Filter remove list to exclude roots.
/// We want to keep roots around so we have hashes for Merkle proofs.
2018-11-01 14:34:47 +03:00
fn removed_excl_roots(removed: &Bitmap) -> Bitmap {
removed
.iter()
.filter(|pos| {
let (parent_pos, _) = family(*pos as u64);
removed.contains(parent_pos as u32)
}).collect()
}