grin/store/src/pmmr.rs

319 lines
9.6 KiB
Rust
Raw Normal View History

// Copyright 2017 The Grin Developers
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of the persistent Backend for the prunable MMR tree.
use std::fs::{self};
use std::io::{self};
use std::marker::PhantomData;
use core::core::pmmr::{self, Backend};
use core::ser::{self, PMMRable};
use core::core::hash::Hash;
use util::LOGGER;
use types::{AppendOnlyFile, RemoveLog, read_ordered_vec, write_vec};
const PMMR_HASH_FILE: &'static str = "pmmr_hash.bin";
const PMMR_DATA_FILE: &'static str = "pmmr_data.bin";
const PMMR_RM_LOG_FILE: &'static str = "pmmr_rm_log.bin";
const PMMR_PRUNED_FILE: &'static str = "pmmr_pruned.bin";
/// Maximum number of nodes in the remove log before it gets flushed
pub const RM_LOG_MAX_NODES: usize = 10000;
/// PMMR persistent backend implementation. Relies on multiple facilities to
/// handle writing, reading and pruning.
///
/// * A main storage file appends Hash instances as they come. This
/// AppendOnlyFile is also backed by a mmap for reads.
/// * An in-memory backend buffers the latest batch of writes to ensure the
/// PMMR can always read recent values even if they haven't been flushed to
/// disk yet.
/// * A remove log tracks the positions that need to be pruned from the
/// main storage file.
pub struct PMMRBackend<T>
where
T: PMMRable,
{
data_dir: String,
hash_file: AppendOnlyFile,
data_file: AppendOnlyFile,
rm_log: RemoveLog,
pruned_nodes: pmmr::PruneList,
phantom: PhantomData<T>,
}
impl<T> Backend<T> for PMMRBackend<T>
where
T: PMMRable,
{
/// Append the provided Hashes to the backend storage.
#[allow(unused_variables)]
fn append(&mut self, position: u64, data: Vec<(Hash, Option<T>)>) -> Result<(), String> {
for d in data {
self.hash_file.append(&mut ser::ser_vec(&d.0).unwrap());
if let Some(elem) = d.1 {
self.data_file.append(&mut ser::ser_vec(&elem).unwrap());
}
}
Ok(())
}
/// Get a Hash by insertion position
fn get(&self, position: u64, include_data:bool) -> Option<(Hash, Option<T>)> {
// Check if this position has been pruned in the remove log or the
// pruned list
if self.rm_log.includes(position) {
return None;
}
let shift = self.pruned_nodes.get_shift(position);
if let None = shift {
return None;
}
// Read PMMR
// The MMR starts at 1, our binary backend starts at 0
let pos = position - 1;
// Must be on disk, doing a read at the correct position
let hash_record_len = 32;
let file_offset = ((pos - shift.unwrap()) as usize) * hash_record_len;
let data = self.hash_file.read(file_offset, hash_record_len);
let hash_val = match ser::deserialize(&mut &data[..]) {
Ok(h) => h,
Err(e) => {
error!(
LOGGER,
"Corrupted storage, could not read an entry from hash store: {:?}",
e
);
return None;
}
};
if !include_data {
return Some(((hash_val), None));
}
// Optionally read flatfile storage to get data element
let flatfile_pos = pmmr::n_leaves(position)
- 1 - self.pruned_nodes.get_leaf_shift(position).unwrap();
let record_len = T::len();
let file_offset = flatfile_pos as usize * T::len();
let data = self.data_file.read(file_offset, record_len);
let data = match ser::deserialize(&mut &data[..]) {
Ok(elem) => Some(elem),
Err(e) => {
error!(
LOGGER,
"Corrupted storage, could not read an entry from backend flatfile store: {:?}",
e
);
None
}
};
Some((hash_val, data))
}
fn rewind(&mut self, position: u64, index: u32) -> Result<(), String> {
self.rm_log
.rewind(index)
.map_err(|e| format!("Could not truncate remove log: {}", e))?;
let shift = self.pruned_nodes.get_shift(position).unwrap_or(0);
let record_len = 32;
let file_pos = (position - shift) * (record_len as u64);
self.hash_file.rewind(file_pos);
//Data file
let flatfile_pos = pmmr::n_leaves(position) - 1;
let file_pos = (flatfile_pos as usize + 1) * T::len();
self.data_file.rewind(file_pos as u64);
Ok(())
}
/// Remove Hashes by insertion position
fn remove(&mut self, positions: Vec<u64>, index: u32) -> Result<(), String> {
self.rm_log.append(positions, index).map_err(|e| {
format!("Could not write to log storage, disk full? {:?}", e)
})
}
/// Return data file path
fn get_data_file_path(&self) -> String {
self.data_file.path()
}
}
impl<T> PMMRBackend<T>
where
T: PMMRable,
{
/// Instantiates a new PMMR backend that will use the provided directly to
/// store its files.
pub fn new(data_dir: String) -> io::Result<PMMRBackend<T>> {
let hash_file = AppendOnlyFile::open(format!("{}/{}", data_dir, PMMR_HASH_FILE))?;
let rm_log = RemoveLog::open(format!("{}/{}", data_dir, PMMR_RM_LOG_FILE))?;
let prune_list = read_ordered_vec(format!("{}/{}", data_dir, PMMR_PRUNED_FILE), 8)?;
let data_file = AppendOnlyFile::open(format!("{}/{}", data_dir, PMMR_DATA_FILE))?;
Ok(PMMRBackend {
data_dir: data_dir,
hash_file: hash_file,
data_file: data_file,
rm_log: rm_log,
pruned_nodes: pmmr::PruneList {
pruned_nodes: prune_list,
},
phantom: PhantomData,
})
}
/// Total size of the PMMR stored by this backend. Only produces the fully
/// sync'd size.
pub fn unpruned_size(&self) -> io::Result<u64> {
let total_shift = self.pruned_nodes.get_shift(::std::u64::MAX).unwrap();
let record_len = 32;
let sz = self.hash_file.size()?;
Ok(sz / record_len + total_shift)
}
/// Syncs all files to disk. A call to sync is required to ensure all the
/// data has been successfully written to disk.
pub fn sync(&mut self) -> io::Result<()> {
if let Err(e) = self.hash_file.flush() {
return Err(io::Error::new(
io::ErrorKind::Interrupted,
format!("Could not write to log hash storage, disk full? {:?}", e),
));
}
if let Err(e) = self.data_file.flush() {
return Err(io::Error::new(
io::ErrorKind::Interrupted,
format!("Could not write to log data storage, disk full? {:?}", e),
));
}
self.rm_log.flush()?;
Ok(())
}
/// Discard the current, non synced state of the backend.
pub fn discard(&mut self) {
self.hash_file.discard();
self.rm_log.discard();
self.data_file.discard();
}
/// Return the data file path
pub fn data_file_path(&self) -> String {
self.get_data_file_path()
}
/// Checks the length of the remove log to see if it should get compacted.
/// If so, the remove log is flushed into the pruned list, which itself gets
/// saved, and the main hashsum data file is rewritten, cutting the removed
/// data.
///
/// If a max_len strictly greater than 0 is provided, the value will be used
/// to decide whether the remove log has reached its maximum length,
/// otherwise the RM_LOG_MAX_NODES default value is used.
///
/// TODO whatever is calling this should also clean up the commit to
/// position index in db
pub fn check_compact(&mut self, max_len: usize) -> io::Result<()> {
if !(max_len > 0 && self.rm_log.len() > max_len
|| max_len == 0 && self.rm_log.len() > RM_LOG_MAX_NODES)
{
return Ok(());
}
// 0. validate none of the nodes in the rm log are in the prune list (to
// avoid accidental double compaction)
for pos in &self.rm_log.removed[..] {
if let None = self.pruned_nodes.pruned_pos(pos.0) {
// TODO we likely can recover from this by directly jumping to 3
error!(
LOGGER,
"The remove log contains nodes that are already in the pruned \
list, a previous compaction likely failed."
);
return Ok(());
}
}
// 1. save hashsum file to a compact copy, skipping data that's in the
// remove list
let tmp_prune_file_hash = format!("{}/{}.hashprune", self.data_dir, PMMR_HASH_FILE);
let record_len = 32;
let to_rm = self.rm_log
.removed
.iter()
.map(|&(pos, _)| {
let shift = self.pruned_nodes.get_shift(pos);
(pos - 1 - shift.unwrap()) * record_len
})
.collect();
self.hash_file
.save_prune(tmp_prune_file_hash.clone(), to_rm, record_len)?;
// 2. And the same with the data file
let tmp_prune_file_data = format!("{}/{}.dataprune", self.data_dir, PMMR_DATA_FILE);
let record_len = T::len() as u64;
let to_rm = self.rm_log
.removed.clone()
.into_iter()
.filter(|&(pos, _)| pmmr::bintree_postorder_height(pos) == 0)
.map(|(pos, _)| {
let shift = self.pruned_nodes.get_leaf_shift(pos).unwrap();
let pos = pmmr::n_leaves(pos as u64);
(pos - 1 - shift) * record_len
})
.collect();
self.data_file
.save_prune(tmp_prune_file_data.clone(), to_rm, record_len)?;
// 3. update the prune list and save it in place
for &(rm_pos, _) in &self.rm_log.removed[..] {
self.pruned_nodes.add(rm_pos);
}
write_vec(
format!("{}/{}", self.data_dir, PMMR_PRUNED_FILE),
&self.pruned_nodes.pruned_nodes,
)?;
// 4. move the compact copy of hashes to the hashsum file and re-open it
fs::rename(
tmp_prune_file_hash.clone(),
format!("{}/{}", self.data_dir, PMMR_HASH_FILE),
)?;
self.hash_file = AppendOnlyFile::open(format!("{}/{}", self.data_dir, PMMR_HASH_FILE))?;
// 5. and the same with the data file
fs::rename(
tmp_prune_file_data.clone(),
format!("{}/{}", self.data_dir, PMMR_DATA_FILE),
)?;
self.data_file = AppendOnlyFile::open(format!("{}/{}", self.data_dir, PMMR_DATA_FILE))?;
// 6. truncate the rm log
self.rm_log.rewind(0)?;
self.rm_log.flush()?;
Ok(())
}
}