grin/pool/tests/pool.rs
hashmap 3026429b05 Do not wrap transactions into Box in pool (#1069)
It makes code more complex and may require more memory allocations than needed.
2018-05-16 00:21:33 +01:00

1151 lines
35 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Top-level Pool tests
extern crate blake2_rfc as blake2;
extern crate grin_core as core;
extern crate grin_keychain as keychain;
extern crate grin_pool as pool;
extern crate grin_util as util;
extern crate grin_wallet as wallet;
extern crate rand;
extern crate time;
use std::collections::HashMap;
use core::core::block;
use core::core::transaction::{self, ProofMessageElements};
use core::core::{OutputIdentifier, Transaction};
use blockchain::{DummyChain, DummyChainImpl, DummyOutputSet};
use core::core::Proof;
use core::core::hash::{Hash, Hashed};
use core::core::pmmr::MerkleProof;
use core::core::target::Difficulty;
use core::global;
use core::global::ChainTypes;
use pool::*;
use std::sync::{Arc, RwLock};
use types::PoolError::InvalidTx;
use keychain::Keychain;
use wallet::libwallet::{build, proof, reward};
use pool::types::*;
macro_rules! expect_output_parent {
($pool:expr, $expected:pat, $( $output:expr ),+ ) => {
$(
match $pool
.search_for_best_output(
&OutputIdentifier::from_output(&test_output($output))
) {
$expected => {},
x => panic!(
"Unexpected result from output search for {:?}, got {:?}",
$output,
x,
),
};
)*
}
}
#[test]
/// A basic test; add a pair of transactions to the pool.
fn test_basic_pool_add() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let parent_transaction = test_transaction(vec![5, 6, 7], vec![11, 3]);
// We want this transaction to be rooted in the blockchain.
let new_output = DummyOutputSet::empty()
.with_output(test_output(5))
.with_output(test_output(6))
.with_output(test_output(7))
.with_output(test_output(8));
// Prepare a second transaction, connected to the first.
let child_transaction = test_transaction(vec![11, 3], vec![12]);
dummy_chain.update_output_set(new_output);
// To mirror how this construction is intended to be used, the pool
// is placed inside a RwLock.
let pool = RwLock::new(test_setup(&Arc::new(dummy_chain)));
// Take the write lock and add a pool entry
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
// First, add the transaction rooted in the blockchain
let result = write_pool.add_to_memory_pool(test_source(), parent_transaction, false);
if result.is_err() {
panic!("got an error adding parent tx: {:?}", result.err().unwrap());
}
// Now, add the transaction connected as a child to the first
let child_result = write_pool.add_to_memory_pool(test_source(), child_transaction, false);
if child_result.is_err() {
panic!(
"got an error adding child tx: {:?}",
child_result.err().unwrap()
);
}
}
// Now take the read lock and use a few exposed methods to check consistency
{
let read_pool = pool.read().unwrap();
assert_eq!(read_pool.total_size(), 2);
expect_output_parent!(read_pool, Parent::PoolTransaction{tx_ref: _}, 12);
expect_output_parent!(read_pool, Parent::AlreadySpent{other_tx: _}, 11, 5);
expect_output_parent!(read_pool, Parent::BlockTransaction, 8);
expect_output_parent!(read_pool, Parent::Unknown, 20);
}
}
#[test]
/// Attempt to add a multi kernel transaction to the mempool
fn test_multikernel_pool_add() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let parent_transaction = test_transaction(vec![5, 6, 7], vec![11, 3]);
// We want this transaction to be rooted in the blockchain.
let new_output = DummyOutputSet::empty()
.with_output(test_output(5))
.with_output(test_output(6))
.with_output(test_output(7))
.with_output(test_output(8));
// Prepare a second transaction, connected to the first.
let child_transaction = test_transaction(vec![11, 3], vec![12]);
let txs = vec![parent_transaction, child_transaction];
let multi_kernel_transaction = transaction::aggregate_with_cut_through(txs).unwrap();
dummy_chain.update_output_set(new_output);
// To mirror how this construction is intended to be used, the pool
// is placed inside a RwLock.
let pool = RwLock::new(test_setup(&Arc::new(dummy_chain)));
// Take the write lock and add a pool entry
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
// First, add the transaction rooted in the blockchain
let result = write_pool.add_to_memory_pool(test_source(), multi_kernel_transaction, false);
if result.is_err() {
panic!(
"got an error adding multi-kernel tx: {:?}",
result.err().unwrap()
);
}
}
// Now take the read lock and use a few exposed methods to check consistency
{
let read_pool = pool.read().unwrap();
assert_eq!(read_pool.total_size(), 1);
expect_output_parent!(read_pool, Parent::PoolTransaction{tx_ref: _}, 12);
expect_output_parent!(read_pool, Parent::AlreadySpent{other_tx: _}, 5);
expect_output_parent!(read_pool, Parent::BlockTransaction, 8);
expect_output_parent!(read_pool, Parent::Unknown, 11, 3, 20);
}
}
#[test]
/// Attempt to deaggregate a multi_kernel transaction
/// Push the parent transaction in the mempool then send a multikernel tx
/// containing it and a child transaction In the end, the pool should contain
/// both transactions.
fn test_multikernel_deaggregate() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let transaction1 = test_transaction_with_offset(vec![5], vec![1]);
println!("{:?}", transaction1.validate());
let transaction2 = test_transaction_with_offset(vec![8], vec![2]);
// We want these transactions to be rooted in the blockchain.
let new_output = DummyOutputSet::empty()
.with_output(test_output(5))
.with_output(test_output(8));
dummy_chain.update_output_set(new_output);
// To mirror how this construction is intended to be used, the pool
// is placed inside a RwLock.
let pool = RwLock::new(test_setup(&Arc::new(dummy_chain)));
// Take the write lock and add a pool entry
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
// First, add the first transaction
let result = write_pool.add_to_memory_pool(test_source(), transaction1.clone(), false);
if result.is_err() {
panic!("got an error adding tx 1: {:?}", result.err().unwrap());
}
}
let txs = vec![transaction1.clone(), transaction2.clone()];
let multi_kernel_transaction = transaction::aggregate(txs).unwrap();
let found_tx: Transaction;
// Now take the read lock and attempt to deaggregate the transaction
{
let read_pool = pool.read().unwrap();
found_tx = read_pool
.deaggregate_transaction(multi_kernel_transaction)
.unwrap();
// Test the retrived transactions
assert_eq!(transaction2, found_tx);
}
// Take the write lock and add a pool entry
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 1);
// First, add the transaction rooted in the blockchain
let result = write_pool.add_to_memory_pool(test_source(), found_tx.clone(), false);
if result.is_err() {
panic!("got an error adding child tx: {:?}", result.err().unwrap());
}
}
// Now take the read lock and use a few exposed methods to check consistency
{
let read_pool = pool.read().unwrap();
assert_eq!(read_pool.total_size(), 2);
expect_output_parent!(read_pool, Parent::PoolTransaction{tx_ref: _}, 1, 2);
expect_output_parent!(read_pool, Parent::AlreadySpent{other_tx: _}, 5, 8);
expect_output_parent!(read_pool, Parent::Unknown, 11, 3, 20);
}
}
#[test]
/// Attempt to add a bad multi kernel transaction to the mempool should get
/// rejected
fn test_bad_multikernel_pool_add() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let parent_transaction = test_transaction(vec![5, 6, 7], vec![11, 3]);
// We want this transaction to be rooted in the blockchain.
let new_output = DummyOutputSet::empty()
.with_output(test_output(5))
.with_output(test_output(6))
.with_output(test_output(7))
.with_output(test_output(8));
// Prepare a second transaction, connected to the first.
let child_transaction1 = test_transaction(vec![11, 3], vec![12]);
let child_transaction2 = test_transaction(vec![11, 3], vec![10]);
let txs = vec![parent_transaction, child_transaction1, child_transaction2];
let bad_multi_kernel_transaction = transaction::aggregate(txs).unwrap();
dummy_chain.update_output_set(new_output);
// To mirror how this construction is intended to be used, the pool
// is placed inside a RwLock.
let pool = RwLock::new(test_setup(&Arc::new(dummy_chain)));
// Take the write lock and add a pool entry
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
// First, add the transaction rooted in the blockchain
let result =
write_pool.add_to_memory_pool(test_source(), bad_multi_kernel_transaction, false);
assert!(result.is_err());
}
}
#[test]
/// A basic test; add a transaction to the pool and add the child to the
/// stempool
fn test_pool_stempool_add() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let parent_transaction = test_transaction(vec![5, 6, 7], vec![11, 3]);
// We want this transaction to be rooted in the blockchain.
let new_output = DummyOutputSet::empty()
.with_output(test_output(5))
.with_output(test_output(6))
.with_output(test_output(7))
.with_output(test_output(8));
// Prepare a second transaction, connected to the first.
let child_transaction = test_transaction(vec![11, 3], vec![12]);
dummy_chain.update_output_set(new_output);
// To mirror how this construction is intended to be used, the pool
// is placed inside a RwLock.
let pool = RwLock::new(test_setup(&Arc::new(dummy_chain)));
// Take the write lock and add a pool entry
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
// First, add the transaction rooted in the blockchain
let result = write_pool.add_to_memory_pool(test_source(), parent_transaction, false);
if result.is_err() {
panic!("got an error adding parent tx: {:?}", result.err().unwrap());
}
// Now, add the transaction connected as a child to the first
let child_result = write_pool.add_to_memory_pool(test_source(), child_transaction, true);
if child_result.is_err() {
panic!(
"got an error adding child tx: {:?}",
child_result.err().unwrap()
);
}
}
// Now take the read lock and use a few exposed methods to check consistency
{
let read_pool = pool.read().unwrap();
assert_eq!(read_pool.total_size(), 2);
if read_pool.stempool.num_transactions() == 0 {
expect_output_parent!(read_pool, Parent::PoolTransaction{tx_ref: _}, 12);
} else {
expect_output_parent!(read_pool, Parent::StemPoolTransaction{tx_ref: _}, 12);
}
expect_output_parent!(read_pool, Parent::AlreadySpent{other_tx: _}, 11, 5);
expect_output_parent!(read_pool, Parent::BlockTransaction, 8);
expect_output_parent!(read_pool, Parent::Unknown, 20);
}
}
#[test]
/// A basic test; add a transaction to the stempool and one the regular
/// transaction pool Child transaction should be added to the stempool.
fn test_stempool_pool_add() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let parent_transaction = test_transaction(vec![5, 6, 7], vec![11, 3]);
// We want this transaction to be rooted in the blockchain.
let new_output = DummyOutputSet::empty()
.with_output(test_output(5))
.with_output(test_output(6))
.with_output(test_output(7))
.with_output(test_output(8));
// Prepare a second transaction, connected to the first.
let child_transaction = test_transaction(vec![11, 3], vec![12]);
dummy_chain.update_output_set(new_output);
// To mirror how this construction is intended to be used, the pool
// is placed inside a RwLock.
let pool = RwLock::new(test_setup(&Arc::new(dummy_chain)));
// Take the write lock and add a pool entry
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
// First, add the transaction rooted in the blockchain
let result = write_pool.add_to_memory_pool(test_source(), parent_transaction, true);
if result.is_err() {
panic!("got an error adding parent tx: {:?}", result.err().unwrap());
}
// Now, add the transaction connected as a child to the first
let child_result = write_pool.add_to_memory_pool(test_source(), child_transaction, false);
if child_result.is_err() {
panic!(
"got an error adding child tx: {:?}",
child_result.err().unwrap()
);
}
}
// Now take the read lock and use a few exposed methods to check consistency
{
let read_pool = pool.read().unwrap();
// First transaction is a stem transaction. In that case the child transaction
// should be force stem
assert_eq!(read_pool.total_size(), 2);
// Parent has been directly fluffed
if read_pool.stempool.num_transactions() == 0 {
expect_output_parent!(read_pool, Parent::PoolTransaction{tx_ref: _}, 12);
} else {
expect_output_parent!(read_pool, Parent::StemPoolTransaction{tx_ref: _}, 12);
}
expect_output_parent!(read_pool, Parent::AlreadySpent{other_tx: _}, 11, 5);
expect_output_parent!(read_pool, Parent::BlockTransaction, 8);
expect_output_parent!(read_pool, Parent::Unknown, 20);
}
}
#[test]
/// Testing various expected error conditions
pub fn test_pool_add_error() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let new_output = DummyOutputSet::empty()
.with_output(test_output(5))
.with_output(test_output(6))
.with_output(test_output(7));
dummy_chain.update_output_set(new_output);
let pool = RwLock::new(test_setup(&Arc::new(dummy_chain)));
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
// First expected failure: duplicate output
let duplicate_tx = test_transaction(vec![5, 6], vec![7]);
match write_pool.add_to_memory_pool(test_source(), duplicate_tx, false) {
Ok(_) => panic!("Got OK from add_to_memory_pool when dup was expected"),
Err(x) => {
match x {
PoolError::DuplicateOutput {
other_tx,
in_chain,
output,
} => if other_tx.is_some() || !in_chain || output != test_output(7).commitment()
{
panic!("Unexpected parameter in DuplicateOutput: {:?}", x);
},
_ => panic!(
"Unexpected error when adding duplicate output transaction: {:?}",
x
),
};
}
};
// To test DoubleSpend and AlreadyInPool conditions, we need to add
// a valid transaction.
let valid_transaction = test_transaction(vec![5, 6], vec![9]);
match write_pool.add_to_memory_pool(test_source(), valid_transaction.clone(), false) {
Ok(_) => {}
Err(x) => panic!("Unexpected error while adding a valid transaction: {:?}", x),
};
// Now, test a DoubleSpend by consuming the same blockchain unspent
// as valid_transaction:
let double_spend_transaction = test_transaction(vec![6], vec![2]);
match write_pool.add_to_memory_pool(test_source(), double_spend_transaction, false) {
Ok(_) => panic!("Expected error when adding double spend, got Ok"),
Err(x) => {
match x {
PoolError::DoubleSpend {
other_tx: _,
spent_output,
} => if spent_output != test_output(6).commitment() {
panic!("Unexpected parameter in DoubleSpend: {:?}", x);
},
_ => panic!(
"Unexpected error when adding double spend transaction: {:?}",
x
),
};
}
};
// Note, this used to work as expected, but after aggsig implementation
// creating another transaction with the same inputs/outputs doesn't create
// the same hash ID due to the random nonces in an aggsig. This
// will instead throw a (correct as well) Already spent error. An AlreadyInPool
// error can only come up in the case of the exact same transaction being
// added
//let already_in_pool = test_transaction(vec![5, 6], vec![9]);
match write_pool.add_to_memory_pool(test_source(), valid_transaction, false) {
Ok(_) => panic!("Expected error when adding already in pool, got Ok"),
Err(x) => {
match x {
PoolError::AlreadyInPool => {}
_ => panic!("Unexpected error when adding already in pool tx: {:?}", x),
};
}
};
assert_eq!(write_pool.total_size(), 1);
// now attempt to add a timelocked tx to the pool
// should fail as invalid based on current height
let timelocked_tx_1 = timelocked_transaction(vec![9], vec![5], 10);
match write_pool.add_to_memory_pool(test_source(), timelocked_tx_1, false) {
Err(PoolError::ImmatureTransaction {
lock_height: height,
}) => {
assert_eq!(height, 10);
}
Err(e) => panic!("expected ImmatureTransaction error here - {:?}", e),
Ok(_) => panic!("expected ImmatureTransaction error here"),
};
}
}
#[test]
fn test_immature_coinbase() {
global::set_mining_mode(ChainTypes::AutomatedTesting);
let mut dummy_chain = DummyChainImpl::new();
let proof_size = global::proofsize();
let lock_height = 1 + global::coinbase_maturity();
assert_eq!(lock_height, 4);
let coinbase_output = test_coinbase_output(15);
dummy_chain.update_output_set(DummyOutputSet::empty().with_output(coinbase_output));
let chain_ref = Arc::new(dummy_chain);
let pool = RwLock::new(test_setup(&chain_ref));
{
let mut write_pool = pool.write().unwrap();
let coinbase_header = block::BlockHeader {
height: 1,
pow: Proof::random(proof_size),
..block::BlockHeader::default()
};
chain_ref.store_head_header(&coinbase_header);
let head_header = block::BlockHeader {
height: 2,
pow: Proof::random(proof_size),
..block::BlockHeader::default()
};
chain_ref.store_head_header(&head_header);
let txn = test_transaction_with_coinbase_input(15, coinbase_header.hash(), vec![10, 3]);
let result = write_pool.add_to_memory_pool(test_source(), txn, false);
match result {
Err(InvalidTx(transaction::Error::ImmatureCoinbase)) => {}
_ => panic!("expected ImmatureCoinbase error here"),
};
let head_header = block::BlockHeader {
height: 4,
..block::BlockHeader::default()
};
chain_ref.store_head_header(&head_header);
let txn = test_transaction_with_coinbase_input(15, coinbase_header.hash(), vec![10, 3]);
let result = write_pool.add_to_memory_pool(test_source(), txn, false);
match result {
Ok(_) => {}
Err(_) => panic!("this should not return an error here"),
};
}
}
#[test]
/// Testing an expected orphan
fn test_add_orphan() {
// TODO we need a test here
}
#[test]
fn test_zero_confirmation_reconciliation() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
// single Output
let new_output = DummyOutputSet::empty().with_output(test_output(100));
dummy_chain.update_output_set(new_output);
let chain_ref = Arc::new(dummy_chain);
let pool = RwLock::new(test_setup(&chain_ref));
// now create two txs
// tx1 spends the Output
// tx2 spends output from tx1
let tx1 = test_transaction(vec![100], vec![90]);
let tx2 = test_transaction(vec![90], vec![80]);
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
// now add both txs to the pool (tx2 spends tx1 with zero confirmations)
// both should be accepted if tx1 added before tx2
write_pool
.add_to_memory_pool(test_source(), tx1, false)
.unwrap();
write_pool
.add_to_memory_pool(test_source(), tx2, false)
.unwrap();
assert_eq!(write_pool.pool_size(), 2);
}
let txs: Vec<transaction::Transaction>;
{
let read_pool = pool.read().unwrap();
let mut mineable_txs = read_pool.prepare_mineable_transactions(3);
txs = mineable_txs.drain(..).collect();
// confirm we can preparing both txs for mining here
// one root tx in the pool, and one non-root vertex in the pool
assert_eq!(txs.len(), 2);
}
let keychain = Keychain::from_random_seed().unwrap();
let key_id = keychain.derive_key_id(1).unwrap();
let fees = txs.iter().map(|tx| tx.fee()).sum();
let reward = reward::output(&keychain, &key_id, fees, 0).unwrap();
// now "mine" the block passing in the mineable txs from earlier
let block = block::Block::new(
&block::BlockHeader::default(),
txs.iter().collect(),
Difficulty::one(),
reward,
).unwrap();
// now apply the block to ensure the chainstate is updated before we reconcile
chain_ref.apply_block(&block);
// now reconcile the block
// we should evict both txs here
{
let mut write_pool = pool.write().unwrap();
let evicted_transactions = write_pool.reconcile_block(&block).unwrap();
assert_eq!(evicted_transactions.len(), 2);
}
// check the pool is consistent after reconciling the block
// we should have zero txs in the pool (neither roots nor non-roots)
{
let read_pool = pool.write().unwrap();
assert_eq!(read_pool.pool.len_vertices(), 0);
assert_eq!(read_pool.pool.len_roots(), 0);
}
}
#[test]
/// Testing block reconciliation
fn test_block_reconciliation() {
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let new_output = DummyOutputSet::empty()
.with_output(test_output(10))
.with_output(test_output(20))
.with_output(test_output(30))
.with_output(test_output(40));
dummy_chain.update_output_set(new_output);
let chain_ref = Arc::new(dummy_chain);
let pool = RwLock::new(test_setup(&chain_ref));
// Preparation: We will introduce a three root pool transactions.
// 1. A transaction that should be invalidated because it is exactly
// contained in the block.
// 2. A transaction that should be invalidated because the input is
// consumed in the block, although it is not exactly consumed.
// 3. A transaction that should remain after block reconciliation.
let block_transaction = test_transaction(vec![10], vec![8]);
let conflict_transaction = test_transaction(vec![20], vec![12, 6]);
let valid_transaction = test_transaction(vec![30], vec![13, 15]);
// We will also introduce a few children:
// 4. A transaction that descends from transaction 1, that is in
// turn exactly contained in the block.
let block_child = test_transaction(vec![8], vec![5, 1]);
// 5. A transaction that descends from transaction 4, that is not
// contained in the block at all and should be valid after
// reconciliation.
let pool_child = test_transaction(vec![5], vec![3]);
// 6. A transaction that descends from transaction 2 that does not
// conflict with anything in the block in any way, but should be
// invalidated (orphaned).
let conflict_child = test_transaction(vec![12], vec![2]);
// 7. A transaction that descends from transaction 2 that should be
// valid due to its inputs being satisfied by the block.
let conflict_valid_child = test_transaction(vec![6], vec![4]);
// 8. A transaction that descends from transaction 3 that should be
// invalidated due to an output conflict.
let valid_child_conflict = test_transaction(vec![13], vec![9]);
// 9. A transaction that descends from transaction 3 that should remain
// valid after reconciliation.
let valid_child_valid = test_transaction(vec![15], vec![11]);
// 10. A transaction that descends from both transaction 6 and
// transaction 9
let mixed_child = test_transaction(vec![2, 11], vec![7]);
// Add transactions.
// Note: There are some ordering constraints that must be followed here
// until orphans is 100% implemented. Once the orphans process has
// stabilized, we can mix these up to exercise that path a bit.
let mut txs_to_add = vec![
block_transaction,
conflict_transaction,
valid_transaction,
block_child,
pool_child,
conflict_child,
conflict_valid_child,
valid_child_conflict,
valid_child_valid,
mixed_child,
];
let expected_pool_size = txs_to_add.len();
// First we add the above transactions to the pool; all should be
// accepted.
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
for tx in txs_to_add.drain(..) {
write_pool
.add_to_memory_pool(test_source(), tx, false)
.unwrap();
}
assert_eq!(write_pool.total_size(), expected_pool_size);
}
// Now we prepare the block that will cause the above condition.
// First, the transactions we want in the block:
// - Copy of 1
let block_tx_1 = test_transaction(vec![10], vec![8]);
// - Conflict w/ 2, satisfies 7
let block_tx_2 = test_transaction(vec![20], vec![6]);
// - Copy of 4
let block_tx_3 = test_transaction(vec![8], vec![5, 1]);
// - Output conflict w/ 8
let block_tx_4 = test_transaction(vec![40], vec![9, 1]);
let block_transactions = vec![&block_tx_1, &block_tx_2, &block_tx_3, &block_tx_4];
let keychain = Keychain::from_random_seed().unwrap();
let key_id = keychain.derive_key_id(1).unwrap();
let fees = block_transactions.iter().map(|tx| tx.fee()).sum();
let reward = reward::output(&keychain, &key_id, fees, 0).unwrap();
let block = block::Block::new(
&block::BlockHeader::default(),
block_transactions,
Difficulty::one(),
reward,
).unwrap();
chain_ref.apply_block(&block);
// Block reconciliation
{
let mut write_pool = pool.write().unwrap();
let evicted_transactions = write_pool.reconcile_block(&block);
assert!(evicted_transactions.is_ok());
assert_eq!(evicted_transactions.unwrap().len(), 6);
// TODO: Txids are not yet deterministic. When they are, we should
// check the specific transactions that were evicted.
}
// Using the pool's methods to validate a few end conditions.
{
let read_pool = pool.read().unwrap();
assert_eq!(read_pool.total_size(), 4);
// We should have available blockchain outputs
expect_output_parent!(read_pool, Parent::BlockTransaction, 9, 1);
// We should have spent blockchain outputs
expect_output_parent!(read_pool, Parent::AlreadySpent{other_tx: _}, 5, 6);
// We should have spent pool references
expect_output_parent!(read_pool, Parent::AlreadySpent{other_tx: _}, 15);
// We should have unspent pool references
expect_output_parent!(read_pool, Parent::PoolTransaction{tx_ref: _}, 3, 11, 13);
// References internal to the block should be unknown
expect_output_parent!(read_pool, Parent::Unknown, 8);
// Evicted transactions should have unknown outputs
expect_output_parent!(read_pool, Parent::Unknown, 2, 7);
}
}
#[test]
/// Test transaction selection and block building.
fn test_block_building() {
// Add a handful of transactions
let mut dummy_chain = DummyChainImpl::new();
let head_header = block::BlockHeader {
height: 1,
..block::BlockHeader::default()
};
dummy_chain.store_head_header(&head_header);
let new_output = DummyOutputSet::empty()
.with_output(test_output(10))
.with_output(test_output(20))
.with_output(test_output(30))
.with_output(test_output(40));
dummy_chain.update_output_set(new_output);
let chain_ref = Arc::new(dummy_chain);
let pool = RwLock::new(test_setup(&chain_ref));
let root_tx_1 = test_transaction(vec![10, 20], vec![24]);
let root_tx_2 = test_transaction(vec![30], vec![28]);
let root_tx_3 = test_transaction(vec![40], vec![38]);
let child_tx_1 = test_transaction(vec![24], vec![22]);
let child_tx_2 = test_transaction(vec![38], vec![32]);
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
assert!(
write_pool
.add_to_memory_pool(test_source(), root_tx_1, false)
.is_ok()
);
assert!(
write_pool
.add_to_memory_pool(test_source(), root_tx_2, false)
.is_ok()
);
assert!(
write_pool
.add_to_memory_pool(test_source(), root_tx_3, false)
.is_ok()
);
assert!(
write_pool
.add_to_memory_pool(test_source(), child_tx_1, false)
.is_ok()
);
assert!(
write_pool
.add_to_memory_pool(test_source(), child_tx_2, false)
.is_ok()
);
assert_eq!(write_pool.total_size(), 5);
}
// Request blocks
let block: block::Block;
let mut txs: Vec<transaction::Transaction>;
{
let read_pool = pool.read().unwrap();
txs = read_pool.prepare_mineable_transactions(3);
assert_eq!(txs.len(), 3);
// TODO: This is ugly, either make block::new take owned
// txs instead of mut refs, or change
// prepare_mineable_transactions to return mut refs
let block_txs: Vec<transaction::Transaction> = txs.drain(..).collect();
let tx_refs: Vec<&transaction::Transaction> = block_txs.iter().collect();
let keychain = Keychain::from_random_seed().unwrap();
let key_id = keychain.derive_key_id(1).unwrap();
let fees = tx_refs.iter().map(|tx| tx.fee()).sum();
let reward = reward::output(&keychain, &key_id, fees, 0).unwrap();
block = block::Block::new(
&block::BlockHeader::default(),
tx_refs,
Difficulty::one(),
reward,
).unwrap();
}
chain_ref.apply_block(&block);
// Reconcile block
{
let mut write_pool = pool.write().unwrap();
let evicted_transactions = write_pool.reconcile_block(&block);
assert!(evicted_transactions.is_ok());
assert_eq!(evicted_transactions.unwrap().len(), 3);
assert_eq!(write_pool.total_size(), 2);
}
}
fn test_setup(dummy_chain: &Arc<DummyChainImpl>) -> TransactionPool<DummyChainImpl> {
TransactionPool {
config: PoolConfig {
accept_fee_base: 0,
max_pool_size: 10_000,
dandelion_probability: 90,
dandelion_embargo: 30,
},
time_stem_transactions: HashMap::new(),
stem_transactions: HashMap::new(),
transactions: HashMap::new(),
stempool: Pool::empty(),
pool: Pool::empty(),
orphans: Orphans::empty(),
blockchain: dummy_chain.clone(),
adapter: Arc::new(NoopAdapter {}),
}
}
/// Cobble together a test transaction for testing the transaction pool.
///
/// Connectivity here is the most important element.
/// Every output is given a blinding key equal to its value, so that the
/// entire commitment can be derived deterministically from just the value.
///
/// Fees are the remainder between input and output values,
/// so the numbers should make sense.
fn test_transaction(input_values: Vec<u64>, output_values: Vec<u64>) -> transaction::Transaction {
let keychain = keychain_for_tests();
let input_sum = input_values.iter().sum::<u64>() as i64;
let output_sum = output_values.iter().sum::<u64>() as i64;
let fees: i64 = input_sum - output_sum;
assert!(fees >= 0);
let mut tx_elements = Vec::new();
for input_value in input_values {
let key_id = keychain.derive_key_id(input_value as u32).unwrap();
tx_elements.push(build::input(input_value, key_id));
}
for output_value in output_values {
let key_id = keychain.derive_key_id(output_value as u32).unwrap();
tx_elements.push(build::output(output_value, key_id));
}
tx_elements.push(build::with_fee(fees as u64));
build::transaction(tx_elements, &keychain).unwrap()
}
fn test_transaction_with_offset(
input_values: Vec<u64>,
output_values: Vec<u64>,
) -> transaction::Transaction {
let keychain = keychain_for_tests();
let input_sum = input_values.iter().sum::<u64>() as i64;
let output_sum = output_values.iter().sum::<u64>() as i64;
let fees: i64 = input_sum - output_sum;
assert!(fees >= 0);
let mut tx_elements = Vec::new();
for input_value in input_values {
let key_id = keychain.derive_key_id(input_value as u32).unwrap();
tx_elements.push(build::input(input_value, key_id));
}
for output_value in output_values {
let key_id = keychain.derive_key_id(output_value as u32).unwrap();
tx_elements.push(build::output(output_value, key_id));
}
tx_elements.push(build::with_fee(fees as u64));
build::transaction_with_offset(tx_elements, &keychain).unwrap()
}
fn test_transaction_with_coinbase_input(
input_value: u64,
input_block_hash: Hash,
output_values: Vec<u64>,
) -> transaction::Transaction {
let keychain = keychain_for_tests();
let output_sum = output_values.iter().sum::<u64>() as i64;
let fees: i64 = input_value as i64 - output_sum;
assert!(fees >= 0);
let mut tx_elements = Vec::new();
let merkle_proof = MerkleProof {
node: Hash::default(),
root: Hash::default(),
peaks: vec![Hash::default()],
..MerkleProof::default()
};
let key_id = keychain.derive_key_id(input_value as u32).unwrap();
tx_elements.push(build::coinbase_input(
input_value,
input_block_hash,
merkle_proof,
key_id,
));
for output_value in output_values {
let key_id = keychain.derive_key_id(output_value as u32).unwrap();
tx_elements.push(build::output(output_value, key_id));
}
tx_elements.push(build::with_fee(fees as u64));
build::transaction(tx_elements, &keychain).unwrap()
}
/// Very un-dry way of building a vanilla tx and adding a lock_height to it.
/// TODO - rethink this.
fn timelocked_transaction(
input_values: Vec<u64>,
output_values: Vec<u64>,
lock_height: u64,
) -> transaction::Transaction {
let keychain = keychain_for_tests();
let fees: i64 =
input_values.iter().sum::<u64>() as i64 - output_values.iter().sum::<u64>() as i64;
assert!(fees >= 0);
let mut tx_elements = Vec::new();
for input_value in input_values {
let key_id = keychain.derive_key_id(input_value as u32).unwrap();
tx_elements.push(build::input(input_value, key_id));
}
for output_value in output_values {
let key_id = keychain.derive_key_id(output_value as u32).unwrap();
tx_elements.push(build::output(output_value, key_id));
}
tx_elements.push(build::with_fee(fees as u64));
tx_elements.push(build::with_lock_height(lock_height));
build::transaction(tx_elements, &keychain).unwrap()
}
/// Deterministically generate an output defined by our test scheme
fn test_output(value: u64) -> transaction::Output {
let keychain = keychain_for_tests();
let key_id = keychain.derive_key_id(value as u32).unwrap();
let msg = ProofMessageElements::new(value, &key_id);
let commit = keychain.commit(value, &key_id).unwrap();
let proof = proof::create(
&keychain,
value,
&key_id,
commit,
None,
msg.to_proof_message(),
).unwrap();
transaction::Output {
features: transaction::OutputFeatures::DEFAULT_OUTPUT,
commit: commit,
proof: proof,
}
}
/// Deterministically generate a coinbase output defined by our test scheme
fn test_coinbase_output(value: u64) -> transaction::Output {
let keychain = keychain_for_tests();
let key_id = keychain.derive_key_id(value as u32).unwrap();
let msg = ProofMessageElements::new(value, &key_id);
let commit = keychain.commit(value, &key_id).unwrap();
let proof = proof::create(
&keychain,
value,
&key_id,
commit,
None,
msg.to_proof_message(),
).unwrap();
transaction::Output {
features: transaction::OutputFeatures::COINBASE_OUTPUT,
commit: commit,
proof: proof,
}
}
fn keychain_for_tests() -> Keychain {
let seed = "pool_tests";
let seed = blake2::blake2b::blake2b(32, &[], seed.as_bytes());
Keychain::from_seed(seed.as_bytes()).unwrap()
}
/// A generic TxSource representing a test
fn test_source() -> TxSource {
TxSource {
debug_name: "test".to_string(),
identifier: "127.0.0.1".to_string(),
}
}