grin/keychain/src/keychain.rs
Yeastplume 1143d84238
Remove Sumtree References and disambiguate some naming (#747)
* start of renamathon

* api renaming

* Rename UTXO-Output to lessen ambiguity

* compile warning

* compile error

* readme fix

* remove file commit in error
2018-03-05 19:33:44 +00:00

1087 lines
32 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use rand::{thread_rng, Rng};
use std::collections::HashMap;
use std::sync::{Arc, RwLock};
use std::{error, fmt};
use util::secp;
use util::secp::{Message, Secp256k1, Signature};
use util::secp::key::{PublicKey, SecretKey};
use util::secp::pedersen::{Commitment, ProofInfo, ProofMessage, RangeProof};
use util::secp::aggsig;
use util::logger::LOGGER;
use util::kernel_sig_msg;
use blake2;
use uuid::Uuid;
use blind::{BlindSum, BlindingFactor};
use extkey::{self, Identifier};
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum Error {
ExtendedKey(extkey::Error),
Secp(secp::Error),
KeyDerivation(String),
Transaction(String),
RangeProof(String),
}
impl From<secp::Error> for Error {
fn from(e: secp::Error) -> Error {
Error::Secp(e)
}
}
impl From<extkey::Error> for Error {
fn from(e: extkey::Error) -> Error {
Error::ExtendedKey(e)
}
}
impl error::Error for Error {
fn description(&self) -> &str {
match *self {
_ => "some kind of keychain error",
}
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
_ => write!(f, "some kind of keychain error"),
}
}
}
/// Holds internal information about an aggsig operation
#[derive(Clone, Debug)]
pub struct AggSigTxContext {
// Secret key (of which public is shared)
pub sec_key: SecretKey,
// Secret nonce (of which public is shared)
// (basically a SecretKey)
pub sec_nonce: SecretKey,
// If I'm the recipient, store my outputs between invocations (that I need to sum)
pub output_ids: Vec<Identifier>,
}
#[derive(Clone, Debug)]
pub struct Keychain {
secp: Secp256k1,
extkey: extkey::ExtendedKey,
pub aggsig_contexts: Arc<RwLock<Option<HashMap<Uuid, AggSigTxContext>>>>,
key_overrides: HashMap<Identifier, SecretKey>,
key_derivation_cache: Arc<RwLock<HashMap<Identifier, u32>>>,
}
impl Keychain {
pub fn root_key_id(&self) -> Identifier {
self.extkey.root_key_id.clone()
}
// For tests and burn only, associate a key identifier with a known secret key.
pub fn burn_enabled(keychain: &Keychain, burn_key_id: &Identifier) -> Keychain {
let mut key_overrides = HashMap::new();
key_overrides.insert(
burn_key_id.clone(),
SecretKey::from_slice(&keychain.secp, &[1; 32]).unwrap(),
);
Keychain {
key_overrides: key_overrides,
..keychain.clone()
}
}
pub fn from_seed(seed: &[u8]) -> Result<Keychain, Error> {
let secp = secp::Secp256k1::with_caps(secp::ContextFlag::Commit);
let extkey = extkey::ExtendedKey::from_seed(&secp, seed)?;
let keychain = Keychain {
secp: secp,
extkey: extkey,
aggsig_contexts: Arc::new(RwLock::new(None)),
key_overrides: HashMap::new(),
key_derivation_cache: Arc::new(RwLock::new(HashMap::new())),
};
Ok(keychain)
}
/// For testing - probably not a good idea to use outside of tests.
pub fn from_random_seed() -> Result<Keychain, Error> {
let seed: String = thread_rng().gen_ascii_chars().take(16).collect();
let seed = blake2::blake2b::blake2b(32, &[], seed.as_bytes());
Keychain::from_seed(seed.as_bytes())
}
pub fn derive_key_id(&self, derivation: u32) -> Result<Identifier, Error> {
let child_key = self.extkey.derive(&self.secp, derivation)?;
Ok(child_key.key_id)
}
fn derived_key(&self, key_id: &Identifier) -> Result<SecretKey, Error> {
// first check our overrides and just return the key if we have one in there
if let Some(key) = self.key_overrides.get(key_id) {
trace!(
LOGGER,
"... Derived Key (using override) key_id: {}",
key_id
);
return Ok(*key);
}
let child_key = self.derived_child_key(key_id)?;
Ok(child_key.key)
}
fn derived_child_key(&self, key_id: &Identifier) -> Result<extkey::ChildKey, Error> {
trace!(LOGGER, "Derived Key by key_id: {}", key_id);
// then check the derivation cache to see if we have previously derived this key
// if so use the derivation from the cache to derive the key
{
let cache = self.key_derivation_cache.read().unwrap();
if let Some(derivation) = cache.get(key_id) {
trace!(
LOGGER,
"... Derived Key (cache hit) key_id: {}, derivation: {}",
key_id,
derivation
);
return Ok(self.derived_key_from_index(*derivation)?);
}
}
// otherwise iterate over a large number of derivations looking for our key
// cache the resulting derivations by key_id for faster lookup later
// TODO - remove hard limit (within reason)
// TODO - do we benefit here if we track our max known n_child?
{
let mut cache = self.key_derivation_cache.write().unwrap();
for i in 1..100_000 {
let child_key = self.extkey.derive(&self.secp, i)?;
// let child_key_id = extkey.identifier(&self.secp)?;
if !cache.contains_key(&child_key.key_id) {
trace!(
LOGGER,
"... Derived Key (cache miss) key_id: {}, derivation: {}",
child_key.key_id,
child_key.n_child,
);
cache.insert(child_key.key_id.clone(), child_key.n_child);
}
if child_key.key_id == *key_id {
return Ok(child_key);
}
}
}
Err(Error::KeyDerivation(format!(
"failed to derive child_key for {:?}",
key_id
)))
}
// if we know the derivation index we can just straight to deriving the key
fn derived_key_from_index(&self, derivation: u32) -> Result<extkey::ChildKey, Error> {
trace!(LOGGER, "Derived Key (fast) by derivation: {}", derivation);
let child_key = self.extkey.derive(&self.secp, derivation)?;
return Ok(child_key);
}
pub fn commit(&self, amount: u64, key_id: &Identifier) -> Result<Commitment, Error> {
let skey = self.derived_key(key_id)?;
let commit = self.secp.commit(amount, skey)?;
Ok(commit)
}
pub fn commit_with_key_index(&self, amount: u64, derivation: u32) -> Result<Commitment, Error> {
let child_key = self.derived_key_from_index(derivation)?;
let commit = self.secp.commit(amount, child_key.key)?;
Ok(commit)
}
pub fn switch_commit(&self, key_id: &Identifier) -> Result<Commitment, Error> {
let skey = self.derived_key(key_id)?;
let commit = self.secp.switch_commit(skey)?;
Ok(commit)
}
pub fn switch_commit_from_index(&self, index: u32) -> Result<Commitment, Error> {
// just do this directly, because cache seems really slow for wallet reconstruct
let skey = self.extkey.derive(&self.secp, index)?;
let skey = skey.key;
let commit = self.secp.switch_commit(skey)?;
Ok(commit)
}
pub fn switch_commit_hash_key(&self, key_id: &Identifier) -> Result<[u8; 32], Error> {
// first check our overrides and just return zero key if we have an override
// we allow keys to be overridden for testing
// and do not care about switch_commit_hash_keys in this case
if let Some(_) = self.key_overrides.get(key_id) {
let key: [u8; 32] = Default::default();
return Ok(key);
}
let child_key = self.derived_child_key(key_id)?;
Ok(child_key.switch_key)
}
pub fn range_proof(
&self,
amount: u64,
key_id: &Identifier,
commit: Commitment,
extra_data: Option<Vec<u8>>,
msg: ProofMessage,
) -> Result<RangeProof, Error> {
let skey = self.derived_key(key_id)?;
if msg.len() == 0 {
return Ok(self.secp.bullet_proof(amount, skey, extra_data, None));
} else {
if msg.len() != 64 {
error!(LOGGER, "Bullet proof message must be 64 bytes.");
return Err(Error::RangeProof(
"Bullet proof message must be 64 bytes".to_string(),
));
}
}
return Ok(self.secp.bullet_proof(amount, skey, extra_data, Some(msg)));
}
pub fn verify_range_proof(
secp: &Secp256k1,
commit: Commitment,
proof: RangeProof,
extra_data: Option<Vec<u8>>,
) -> Result<(), secp::Error> {
let result = secp.verify_bullet_proof(commit, proof, extra_data);
match result {
Ok(_) => Ok(()),
Err(e) => Err(e),
}
}
pub fn rewind_range_proof(
&self,
key_id: &Identifier,
commit: Commitment,
extra_data: Option<Vec<u8>>,
proof: RangeProof,
) -> Result<ProofInfo, Error> {
let nonce = self.derived_key(key_id)?;
let proof_message = self.secp
.unwind_bullet_proof(commit, nonce, extra_data, proof);
let proof_info = match proof_message {
Ok(p) => ProofInfo {
success: true,
value: 0,
message: p,
mlen: 0,
min: 0,
max: 0,
exp: 0,
mantissa: 0,
},
Err(_) => ProofInfo {
success: false,
value: 0,
message: ProofMessage::empty(),
mlen: 0,
min: 0,
max: 0,
exp: 0,
mantissa: 0,
},
};
return Ok(proof_info);
}
pub fn blind_sum(&self, blind_sum: &BlindSum) -> Result<BlindingFactor, Error> {
let mut pos_keys: Vec<SecretKey> = blind_sum
.positive_key_ids
.iter()
.filter_map(|k| self.derived_key(&k).ok())
.collect();
let mut neg_keys: Vec<SecretKey> = blind_sum
.negative_key_ids
.iter()
.filter_map(|k| self.derived_key(&k).ok())
.collect();
pos_keys.extend(&blind_sum
.positive_blinding_factors
.iter()
.filter_map(|b| b.secret_key(&self.secp).ok())
.collect::<Vec<SecretKey>>());
neg_keys.extend(&blind_sum
.negative_blinding_factors
.iter()
.filter_map(|b| b.secret_key(&self.secp).ok())
.collect::<Vec<SecretKey>>());
let sum = self.secp.blind_sum(pos_keys, neg_keys)?;
Ok(BlindingFactor::from_secret_key(sum))
}
pub fn aggsig_create_context(
&self,
transaction_id: &Uuid,
sec_key: SecretKey,
) -> Result<(), Error> {
let mut contexts = self.aggsig_contexts.write().unwrap();
if contexts.is_none() {
*contexts = Some(HashMap::new())
}
if contexts.as_mut().unwrap().contains_key(transaction_id) {
return Err(Error::Transaction(String::from(
"Duplication transaction id",
)));
}
contexts.as_mut().unwrap().insert(
transaction_id.clone(),
AggSigTxContext {
sec_key: sec_key,
sec_nonce: aggsig::export_secnonce_single(&self.secp).unwrap(),
output_ids: vec![],
},
);
Ok(())
}
/// Tracks an output contributing to my excess value (if it needs to
/// be kept between invocations
pub fn aggsig_add_output(&self, transaction_id: &Uuid, output_id: &Identifier) {
let mut agg_contexts = self.aggsig_contexts.write().unwrap();
let mut agg_contexts_local = agg_contexts.as_mut().unwrap().clone();
let mut agg_context = agg_contexts_local.get(transaction_id).unwrap().clone();
agg_context.output_ids.push(output_id.clone());
agg_contexts_local.insert(transaction_id.clone(), agg_context);
*agg_contexts = Some(agg_contexts_local);
}
/// Returns all stored outputs
pub fn aggsig_get_outputs(&self, transaction_id: &Uuid) -> Vec<Identifier> {
let contexts = self.aggsig_contexts.clone();
let contexts_read = contexts.read().unwrap();
let agg_context = contexts_read.as_ref().unwrap();
let agg_context_return = agg_context.get(transaction_id);
agg_context_return.unwrap().output_ids.clone()
}
/// Returns private key, private nonce
pub fn aggsig_get_private_keys(&self, transaction_id: &Uuid) -> (SecretKey, SecretKey) {
let contexts = self.aggsig_contexts.clone();
let contexts_read = contexts.read().unwrap();
let agg_context = contexts_read.as_ref().unwrap();
let agg_context_return = agg_context.get(transaction_id);
(
agg_context_return.unwrap().sec_key.clone(),
agg_context_return.unwrap().sec_nonce.clone(),
)
}
/// Returns public key, public nonce
pub fn aggsig_get_public_keys(&self, transaction_id: &Uuid) -> (PublicKey, PublicKey) {
let contexts = self.aggsig_contexts.clone();
let contexts_read = contexts.read().unwrap();
let agg_context = contexts_read.as_ref().unwrap();
let agg_context_return = agg_context.get(transaction_id);
(
PublicKey::from_secret_key(&self.secp, &agg_context_return.unwrap().sec_key).unwrap(),
PublicKey::from_secret_key(&self.secp, &agg_context_return.unwrap().sec_nonce).unwrap(),
)
}
/// Note 'secnonce' here is used to perform the signature, while 'pubnonce' just allows you to
/// provide a custom public nonce to include while calculating e
/// nonce_sum is the sum used to decide whether secnonce should be inverted during sig time
pub fn aggsig_sign_single(
&self,
transaction_id: &Uuid,
msg: &Message,
secnonce: Option<&SecretKey>,
pubnonce: Option<&PublicKey>,
nonce_sum: Option<&PublicKey>,
) -> Result<Signature, Error> {
let contexts = self.aggsig_contexts.clone();
let contexts_read = contexts.read().unwrap();
let agg_context = contexts_read.as_ref().unwrap();
let agg_context_return = agg_context.get(transaction_id);
let sig = aggsig::sign_single(
&self.secp,
msg,
&agg_context_return.unwrap().sec_key,
secnonce,
pubnonce,
nonce_sum,
)?;
Ok(sig)
}
//Verifies an aggsig signature
pub fn aggsig_verify_single(
&self,
sig: &Signature,
msg: &Message,
pubnonce: Option<&PublicKey>,
pubkey: &PublicKey,
is_partial: bool,
) -> bool {
aggsig::verify_single(&self.secp, sig, msg, pubnonce, pubkey, is_partial)
}
//Verifies other final sig corresponds with what we're expecting
pub fn aggsig_verify_final_sig_build_msg(
&self,
sig: &Signature,
pubkey: &PublicKey,
fee: u64,
lock_height: u64,
) -> bool {
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height)).unwrap();
self.aggsig_verify_single(sig, &msg, None, pubkey, true)
}
//Verifies other party's sig corresponds with what we're expecting
pub fn aggsig_verify_partial_sig(
&self,
transaction_id: &Uuid,
sig: &Signature,
other_pub_nonce: &PublicKey,
pubkey: &PublicKey,
fee: u64,
lock_height: u64,
) -> bool {
let (_, sec_nonce) = self.aggsig_get_private_keys(transaction_id);
let mut nonce_sum = other_pub_nonce.clone();
let _ = nonce_sum.add_exp_assign(&self.secp, &sec_nonce);
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height)).unwrap();
self.aggsig_verify_single(sig, &msg, Some(&nonce_sum), pubkey, true)
}
pub fn aggsig_calculate_partial_sig(
&self,
transaction_id: &Uuid,
other_pub_nonce: &PublicKey,
fee: u64,
lock_height: u64,
) -> Result<Signature, Error> {
// Add public nonces kR*G + kS*G
let (_, sec_nonce) = self.aggsig_get_private_keys(transaction_id);
let mut nonce_sum = other_pub_nonce.clone();
let _ = nonce_sum.add_exp_assign(&self.secp, &sec_nonce);
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height))?;
//Now calculate signature using message M=fee, nonce in e=nonce_sum
self.aggsig_sign_single(
transaction_id,
&msg,
Some(&sec_nonce),
Some(&nonce_sum),
Some(&nonce_sum),
)
}
/// Helper function to calculate final signature
pub fn aggsig_calculate_final_sig(
&self,
transaction_id: &Uuid,
their_sig: &Signature,
our_sig: &Signature,
their_pub_nonce: &PublicKey,
) -> Result<Signature, Error> {
// Add public nonces kR*G + kS*G
let (_, sec_nonce) = self.aggsig_get_private_keys(transaction_id);
let mut nonce_sum = their_pub_nonce.clone();
let _ = nonce_sum.add_exp_assign(&self.secp, &sec_nonce);
let sig = aggsig::add_signatures_single(&self.secp, their_sig, our_sig, &nonce_sum)?;
Ok(sig)
}
/// Helper function to calculate final public key
pub fn aggsig_calculate_final_pubkey(
&self,
transaction_id: &Uuid,
their_public_key: &PublicKey,
) -> Result<PublicKey, Error> {
let (our_sec_key, _) = self.aggsig_get_private_keys(transaction_id);
let mut pk_sum = their_public_key.clone();
let _ = pk_sum.add_exp_assign(&self.secp, &our_sec_key);
Ok(pk_sum)
}
/// Just a simple sig, creates its own nonce, etc
pub fn aggsig_sign_from_key_id(
&self,
msg: &Message,
key_id: &Identifier,
) -> Result<Signature, Error> {
let skey = self.derived_key(key_id)?;
let sig = aggsig::sign_single(&self.secp, &msg, &skey, None, None, None)?;
Ok(sig)
}
/// Verifies a sig given a commitment
pub fn aggsig_verify_single_from_commit(
secp: &Secp256k1,
sig: &Signature,
msg: &Message,
commit: &Commitment,
) -> bool {
// Extract the pubkey, unfortunately we need this hack for now, (we just hope
// one is valid) TODO: Create better secp256k1 API to do this
let pubkeys = commit.to_two_pubkeys(secp);
let mut valid = false;
for i in 0..pubkeys.len() {
valid = aggsig::verify_single(secp, &sig, &msg, None, &pubkeys[i], false);
if valid {
break;
}
}
valid
}
/// Just a simple sig, creates its own nonce, etc
pub fn aggsig_sign_with_blinding(
secp: &Secp256k1,
msg: &Message,
blinding: &BlindingFactor,
) -> Result<Signature, Error> {
let skey = &blinding.secret_key(&secp)?;
let sig = aggsig::sign_single(secp, &msg, skey, None, None, None)?;
Ok(sig)
}
pub fn sign(&self, msg: &Message, key_id: &Identifier) -> Result<Signature, Error> {
let skey = self.derived_key(key_id)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
pub fn sign_with_blinding(
&self,
msg: &Message,
blinding: &BlindingFactor,
) -> Result<Signature, Error> {
let skey = &blinding.secret_key(&self.secp)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
pub fn secp(&self) -> &Secp256k1 {
&self.secp
}
}
#[cfg(test)]
mod test {
use rand::thread_rng;
use uuid::Uuid;
use keychain::{BlindSum, BlindingFactor, Keychain};
use util::kernel_sig_msg;
use util::secp;
use util::secp::pedersen::ProofMessage;
use util::secp::key::SecretKey;
#[test]
fn test_key_derivation() {
let keychain = Keychain::from_random_seed().unwrap();
let secp = keychain.secp();
// use the keychain to derive a "key_id" based on the underlying seed
let key_id = keychain.derive_key_id(1).unwrap();
let msg_bytes = [0; 32];
let msg = secp::Message::from_slice(&msg_bytes[..]).unwrap();
// now create a zero commitment using the key on the keychain associated with
// the key_id
let commit = keychain.commit(0, &key_id).unwrap();
// now check we can use our key to verify a signature from this zero commitment
let sig = keychain.sign(&msg, &key_id).unwrap();
secp.verify_from_commit(&msg, &sig, &commit).unwrap();
}
#[test]
fn test_rewind_range_proof() {
let keychain = Keychain::from_random_seed().unwrap();
let key_id = keychain.derive_key_id(1).unwrap();
let commit = keychain.commit(5, &key_id).unwrap();
let mut msg = ProofMessage::from_bytes(&[0u8; 64]);
let extra_data = [99u8; 64];
let proof = keychain
.range_proof(5, &key_id, commit, Some(extra_data.to_vec().clone()), msg)
.unwrap();
let proof_info = keychain
.rewind_range_proof(&key_id, commit, Some(extra_data.to_vec().clone()), proof)
.unwrap();
assert_eq!(proof_info.success, true);
// now check the recovered message is "empty" (but not truncated) i.e. all
// zeroes
//Value is in the message in this case
assert_eq!(
proof_info.message,
secp::pedersen::ProofMessage::from_bytes(&[0; secp::constants::BULLET_PROOF_MSG_SIZE])
);
let key_id2 = keychain.derive_key_id(2).unwrap();
// cannot rewind with a different nonce
let proof_info = keychain
.rewind_range_proof(&key_id2, commit, Some(extra_data.to_vec().clone()), proof)
.unwrap();
// With bullet proofs, if you provide the wrong nonce you'll get gibberish back
// as opposed to a failure to recover the message
assert_ne!(
proof_info.message,
secp::pedersen::ProofMessage::from_bytes(&[0; secp::constants::BULLET_PROOF_MSG_SIZE])
);
assert_eq!(proof_info.value, 0);
// cannot rewind with a commitment to the same value using a different key
let commit2 = keychain.commit(5, &key_id2).unwrap();
let proof_info = keychain
.rewind_range_proof(&key_id, commit2, Some(extra_data.to_vec().clone()), proof)
.unwrap();
assert_eq!(proof_info.success, false);
assert_eq!(proof_info.value, 0);
// cannot rewind with a commitment to a different value
let commit3 = keychain.commit(4, &key_id).unwrap();
let proof_info = keychain
.rewind_range_proof(&key_id, commit3, Some(extra_data.to_vec().clone()), proof)
.unwrap();
assert_eq!(proof_info.success, false);
assert_eq!(proof_info.value, 0);
// cannot rewind with wrong extra committed data
let commit3 = keychain.commit(4, &key_id).unwrap();
let wrong_extra_data = [98u8; 64];
let should_err = keychain
.rewind_range_proof(
&key_id,
commit3,
Some(wrong_extra_data.to_vec().clone()),
proof,
)
.unwrap();
assert_eq!(proof_info.success, false);
assert_eq!(proof_info.value, 0);
}
// We plan to "offset" the key used in the kernel commitment
// so we are going to be doing some key addition/subtraction.
// This test is mainly to demonstrate that idea that summing commitments
// and summing the keys used to commit to 0 have the same result.
#[test]
fn secret_key_addition() {
let keychain = Keychain::from_random_seed().unwrap();
let skey1 = SecretKey::from_slice(
&keychain.secp,
&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1,
],
).unwrap();
let skey2 = SecretKey::from_slice(
&keychain.secp,
&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2,
],
).unwrap();
// adding secret keys 1 and 2 to give secret key 3
let mut skey3 = skey1.clone();
let _ = skey3.add_assign(&keychain.secp, &skey2).unwrap();
// create commitments for secret keys 1, 2 and 3
// all committing to the value 0 (which is what we do for tx_kernels)
let commit_1 = keychain.secp.commit(0, skey1).unwrap();
let commit_2 = keychain.secp.commit(0, skey2).unwrap();
let commit_3 = keychain.secp.commit(0, skey3).unwrap();
// now sum commitments for keys 1 and 2
let sum = keychain
.secp
.commit_sum(vec![commit_1.clone(), commit_2.clone()], vec![])
.unwrap();
// confirm the commitment for key 3 matches the sum of the commitments 1 and 2
assert_eq!(sum, commit_3);
// now check we can sum keys up using keychain.blind_sum()
// in the same way (convenience function)
assert_eq!(
keychain
.blind_sum(&BlindSum::new()
.add_blinding_factor(BlindingFactor::from_secret_key(skey1))
.add_blinding_factor(BlindingFactor::from_secret_key(skey2)))
.unwrap(),
BlindingFactor::from_secret_key(skey3),
);
}
#[test]
fn aggsig_sender_receiver_interaction() {
let sender_keychain = Keychain::from_random_seed().unwrap();
let receiver_keychain = Keychain::from_random_seed().unwrap();
// tx identifier for wallet interaction
let tx_id = Uuid::new_v4();
// Calculate the kernel excess here for convenience.
// Normally this would happen during transaction building.
let kernel_excess = {
let skey1 = sender_keychain
.derived_key(&sender_keychain.derive_key_id(1).unwrap())
.unwrap();
let skey2 = receiver_keychain
.derived_key(&receiver_keychain.derive_key_id(1).unwrap())
.unwrap();
let keychain = Keychain::from_random_seed().unwrap();
let blinding_factor = keychain
.blind_sum(&BlindSum::new()
.sub_blinding_factor(BlindingFactor::from_secret_key(skey1))
.add_blinding_factor(BlindingFactor::from_secret_key(skey2)))
.unwrap();
keychain
.secp
.commit(0, blinding_factor.secret_key(&keychain.secp).unwrap())
.unwrap()
};
// sender starts the tx interaction
let (sender_pub_excess, sender_pub_nonce) = {
let keychain = sender_keychain.clone();
let skey = keychain
.derived_key(&keychain.derive_key_id(1).unwrap())
.unwrap();
// dealing with an input here so we need to negate the blinding_factor
// rather than use it as is
let blinding_factor = keychain
.blind_sum(&BlindSum::new()
.sub_blinding_factor(BlindingFactor::from_secret_key(skey)))
.unwrap();
let blind = blinding_factor.secret_key(&keychain.secp()).unwrap();
keychain.aggsig_create_context(&tx_id, blind);
keychain.aggsig_get_public_keys(&tx_id)
};
// receiver receives partial tx
let (receiver_pub_excess, receiver_pub_nonce, sig_part) = {
let keychain = receiver_keychain.clone();
let key_id = keychain.derive_key_id(1).unwrap();
// let blind = blind_sum.secret_key(&keychain.secp())?;
let blind = keychain.derived_key(&key_id).unwrap();
keychain.aggsig_create_context(&tx_id, blind);
let (pub_excess, pub_nonce) = keychain.aggsig_get_public_keys(&tx_id);
keychain.aggsig_add_output(&tx_id, &key_id);
let sig_part = keychain
.aggsig_calculate_partial_sig(&tx_id, &sender_pub_nonce, 0, 0)
.unwrap();
(pub_excess, pub_nonce, sig_part)
};
// check the sender can verify the partial signature
// received in the response back from the receiver
{
let keychain = sender_keychain.clone();
let sig_verifies = keychain.aggsig_verify_partial_sig(
&tx_id,
&sig_part,
&receiver_pub_nonce,
&receiver_pub_excess,
0,
0,
);
assert!(sig_verifies);
}
// now sender signs with their key
let sender_sig_part = {
let keychain = sender_keychain.clone();
keychain
.aggsig_calculate_partial_sig(&tx_id, &receiver_pub_nonce, 0, 0)
.unwrap()
};
// check the receiver can verify the partial signature
// received by the sender
{
let keychain = receiver_keychain.clone();
let sig_verifies = keychain.aggsig_verify_partial_sig(
&tx_id,
&sender_sig_part,
&sender_pub_nonce,
&sender_pub_excess,
0,
0,
);
assert!(sig_verifies);
}
// Receiver now builds final signature from sender and receiver parts
let (final_sig, final_pubkey) = {
let keychain = receiver_keychain.clone();
// Receiver recreates their partial sig (we do not maintain state from earlier)
let our_sig_part = keychain
.aggsig_calculate_partial_sig(&tx_id, &sender_pub_nonce, 0, 0)
.unwrap();
// Receiver now generates final signature from the two parts
let final_sig = keychain
.aggsig_calculate_final_sig(
&tx_id,
&sender_sig_part,
&our_sig_part,
&sender_pub_nonce,
)
.unwrap();
// Receiver calculates the final public key (to verify sig later)
let final_pubkey = keychain
.aggsig_calculate_final_pubkey(&tx_id, &sender_pub_excess)
.unwrap();
(final_sig, final_pubkey)
};
// Receiver checks the final signature verifies
{
let keychain = receiver_keychain.clone();
// Receiver check the final signature verifies
let sig_verifies =
keychain.aggsig_verify_final_sig_build_msg(&final_sig, &final_pubkey, 0, 0);
assert!(sig_verifies);
}
// Check we can verify the sig using the kernel excess
{
let keychain = Keychain::from_random_seed().unwrap();
let msg = secp::Message::from_slice(&kernel_sig_msg(0, 0)).unwrap();
let sig_verifies = Keychain::aggsig_verify_single_from_commit(
&keychain.secp,
&final_sig,
&msg,
&kernel_excess,
);
assert!(sig_verifies);
}
}
#[test]
fn aggsig_sender_receiver_interaction_offset() {
let sender_keychain = Keychain::from_random_seed().unwrap();
let receiver_keychain = Keychain::from_random_seed().unwrap();
// tx identifier for wallet interaction
let tx_id = Uuid::new_v4();
// This is the kernel offset that we use to split the key
// Summing these at the block level prevents the
// kernels from being used to reconstruct (or identify) individual transactions
let kernel_offset = SecretKey::new(&sender_keychain.secp(), &mut thread_rng());
// Calculate the kernel excess here for convenience.
// Normally this would happen during transaction building.
let kernel_excess = {
let skey1 = sender_keychain
.derived_key(&sender_keychain.derive_key_id(1).unwrap())
.unwrap();
let skey2 = receiver_keychain
.derived_key(&receiver_keychain.derive_key_id(1).unwrap())
.unwrap();
let keychain = Keychain::from_random_seed().unwrap();
let blinding_factor = keychain
.blind_sum(&BlindSum::new()
.sub_blinding_factor(BlindingFactor::from_secret_key(skey1))
.add_blinding_factor(BlindingFactor::from_secret_key(skey2))
// subtract the kernel offset here like as would when
// verifying a kernel signature
.sub_blinding_factor(BlindingFactor::from_secret_key(kernel_offset)))
.unwrap();
keychain
.secp
.commit(0, blinding_factor.secret_key(&keychain.secp).unwrap())
.unwrap()
};
// sender starts the tx interaction
let (sender_pub_excess, sender_pub_nonce) = {
let keychain = sender_keychain.clone();
let skey = keychain
.derived_key(&keychain.derive_key_id(1).unwrap())
.unwrap();
// dealing with an input here so we need to negate the blinding_factor
// rather than use it as is
let blinding_factor = keychain
.blind_sum(&BlindSum::new()
.sub_blinding_factor(BlindingFactor::from_secret_key(skey))
// subtract the kernel offset to create an aggsig context
// with our "split" key
.sub_blinding_factor(BlindingFactor::from_secret_key(kernel_offset)))
.unwrap();
let blind = blinding_factor.secret_key(&keychain.secp()).unwrap();
keychain.aggsig_create_context(&tx_id, blind);
keychain.aggsig_get_public_keys(&tx_id)
};
// receiver receives partial tx
let (receiver_pub_excess, receiver_pub_nonce, sig_part) = {
let keychain = receiver_keychain.clone();
let key_id = keychain.derive_key_id(1).unwrap();
let blind = keychain.derived_key(&key_id).unwrap();
keychain.aggsig_create_context(&tx_id, blind);
let (pub_excess, pub_nonce) = keychain.aggsig_get_public_keys(&tx_id);
keychain.aggsig_add_output(&tx_id, &key_id);
let sig_part = keychain
.aggsig_calculate_partial_sig(&tx_id, &sender_pub_nonce, 0, 0)
.unwrap();
(pub_excess, pub_nonce, sig_part)
};
// check the sender can verify the partial signature
// received in the response back from the receiver
{
let keychain = sender_keychain.clone();
let sig_verifies = keychain.aggsig_verify_partial_sig(
&tx_id,
&sig_part,
&receiver_pub_nonce,
&receiver_pub_excess,
0,
0,
);
assert!(sig_verifies);
}
// now sender signs with their key
let sender_sig_part = {
let keychain = sender_keychain.clone();
keychain
.aggsig_calculate_partial_sig(&tx_id, &receiver_pub_nonce, 0, 0)
.unwrap()
};
// check the receiver can verify the partial signature
// received by the sender
{
let keychain = receiver_keychain.clone();
let sig_verifies = keychain.aggsig_verify_partial_sig(
&tx_id,
&sender_sig_part,
&sender_pub_nonce,
&sender_pub_excess,
0,
0,
);
assert!(sig_verifies);
}
// Receiver now builds final signature from sender and receiver parts
let (final_sig, final_pubkey) = {
let keychain = receiver_keychain.clone();
// Receiver recreates their partial sig (we do not maintain state from earlier)
let our_sig_part = keychain
.aggsig_calculate_partial_sig(&tx_id, &sender_pub_nonce, 0, 0)
.unwrap();
// Receiver now generates final signature from the two parts
let final_sig = keychain
.aggsig_calculate_final_sig(
&tx_id,
&sender_sig_part,
&our_sig_part,
&sender_pub_nonce,
)
.unwrap();
// Receiver calculates the final public key (to verify sig later)
let final_pubkey = keychain
.aggsig_calculate_final_pubkey(&tx_id, &sender_pub_excess)
.unwrap();
(final_sig, final_pubkey)
};
// Receiver checks the final signature verifies
{
let keychain = receiver_keychain.clone();
// Receiver check the final signature verifies
let sig_verifies =
keychain.aggsig_verify_final_sig_build_msg(&final_sig, &final_pubkey, 0, 0);
assert!(sig_verifies);
}
// Check we can verify the sig using the kernel excess
{
let keychain = Keychain::from_random_seed().unwrap();
let msg = secp::Message::from_slice(&kernel_sig_msg(0, 0)).unwrap();
let sig_verifies = Keychain::aggsig_verify_single_from_commit(
&keychain.secp,
&final_sig,
&msg,
&kernel_excess,
);
assert!(sig_verifies);
}
}
}