grin/p2p/src/msg.rs
Antioch Peverell d97a6c2189
[DNM] broadcast tx kernel hash (if supported by peer) (#1929)
broadcast tx kernel hash (if supported by peer)
2018-11-07 09:28:17 +00:00

766 lines
20 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Message types that transit over the network and related serialization code.
use num::FromPrimitive;
use std::io::{self, Read, Write};
use std::net::{Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6, TcpStream};
use std::{thread, time};
use core::consensus;
use core::core::hash::Hash;
use core::core::BlockHeader;
use core::pow::Difficulty;
use core::ser::{self, Readable, Reader, Writeable, Writer};
use types::{Capabilities, Error, ReasonForBan, MAX_BLOCK_HEADERS, MAX_LOCATORS, MAX_PEER_ADDRS};
/// Current latest version of the protocol
pub const PROTOCOL_VERSION: u32 = 1;
/// Grin's user agent with current version
pub const USER_AGENT: &'static str = concat!("MW/Grin ", env!("CARGO_PKG_VERSION"));
/// Magic number expected in the header of every message
const MAGIC: [u8; 2] = [0x54, 0x34];
/// Size in bytes of a message header
pub const HEADER_LEN: u64 = 11;
/// Max theoretical size of a block filled with outputs.
const MAX_BLOCK_SIZE: u64 =
(consensus::MAX_BLOCK_WEIGHT / consensus::BLOCK_OUTPUT_WEIGHT * 708) as u64;
/// Types of messages.
/// Note: Values here are *important* so we should only add new values at the
/// end.
enum_from_primitive! {
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Type {
Error = 0,
Hand = 1,
Shake = 2,
Ping = 3,
Pong = 4,
GetPeerAddrs = 5,
PeerAddrs = 6,
GetHeaders = 7,
Header = 8,
Headers = 9,
GetBlock = 10,
Block = 11,
GetCompactBlock = 12,
CompactBlock = 13,
StemTransaction = 14,
Transaction = 15,
TxHashSetRequest = 16,
TxHashSetArchive = 17,
BanReason = 18,
GetTransaction = 19,
TransactionKernel = 20,
}
}
// Max msg size for each msg type.
fn max_msg_size(msg_type: Type) -> u64 {
match msg_type {
Type::Error => 0,
Type::Hand => 128,
Type::Shake => 88,
Type::Ping => 16,
Type::Pong => 16,
Type::GetPeerAddrs => 4,
Type::PeerAddrs => 4 + (1 + 16 + 2) * MAX_PEER_ADDRS as u64,
Type::GetHeaders => 1 + 32 * MAX_LOCATORS as u64,
Type::Header => 365,
Type::Headers => 2 + 365 * MAX_BLOCK_HEADERS as u64,
Type::GetBlock => 32,
Type::Block => MAX_BLOCK_SIZE,
Type::GetCompactBlock => 32,
Type::CompactBlock => MAX_BLOCK_SIZE / 10,
Type::StemTransaction => MAX_BLOCK_SIZE,
Type::Transaction => MAX_BLOCK_SIZE,
Type::TxHashSetRequest => 40,
Type::TxHashSetArchive => 64,
Type::BanReason => 64,
Type::GetTransaction => 32,
Type::TransactionKernel => 32,
}
}
/// The default implementation of read_exact is useless with async TcpStream as
/// it will return as soon as something has been read, regardless of
/// whether the buffer has been filled (and then errors). This implementation
/// will block until it has read exactly `len` bytes and returns them as a
/// `vec<u8>`. Except for a timeout, this implementation will never return a
/// partially filled buffer.
///
/// The timeout in milliseconds aborts the read when it's met. Note that the
/// time is not guaranteed to be exact. To support cases where we want to poll
/// instead of blocking, a `block_on_empty` boolean, when false, ensures
/// `read_exact` returns early with a `io::ErrorKind::WouldBlock` if nothing
/// has been read from the socket.
pub fn read_exact(
conn: &mut TcpStream,
mut buf: &mut [u8],
timeout: time::Duration,
block_on_empty: bool,
) -> io::Result<()> {
let sleep_time = time::Duration::from_micros(10);
let mut count = time::Duration::new(0, 0);
let mut read = 0;
loop {
match conn.read(buf) {
Ok(0) => {
return Err(io::Error::new(
io::ErrorKind::ConnectionAborted,
"read_exact",
));
}
Ok(n) => {
let tmp = buf;
buf = &mut tmp[n..];
read += n;
}
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
if read == 0 && !block_on_empty {
return Err(io::Error::new(io::ErrorKind::WouldBlock, "read_exact"));
}
}
Err(e) => return Err(e),
}
if !buf.is_empty() {
thread::sleep(sleep_time);
count += sleep_time;
} else {
break;
}
if count > timeout {
return Err(io::Error::new(
io::ErrorKind::TimedOut,
"reading from tcp stream",
));
}
}
Ok(())
}
/// Same as `read_exact` but for writing.
pub fn write_all(conn: &mut Write, mut buf: &[u8], timeout: time::Duration) -> io::Result<()> {
let sleep_time = time::Duration::from_micros(10);
let mut count = time::Duration::new(0, 0);
while !buf.is_empty() {
match conn.write(buf) {
Ok(0) => {
return Err(io::Error::new(
io::ErrorKind::WriteZero,
"failed to write whole buffer",
))
}
Ok(n) => buf = &buf[n..],
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
Err(e) => return Err(e),
}
if !buf.is_empty() {
thread::sleep(sleep_time);
count += sleep_time;
} else {
break;
}
if count > timeout {
return Err(io::Error::new(
io::ErrorKind::TimedOut,
"reading from tcp stream",
));
}
}
Ok(())
}
/// Read a header from the provided connection without blocking if the
/// underlying stream is async. Typically headers will be polled for, so
/// we do not want to block.
pub fn read_header(conn: &mut TcpStream, msg_type: Option<Type>) -> Result<MsgHeader, Error> {
let mut head = vec![0u8; HEADER_LEN as usize];
if Some(Type::Hand) == msg_type {
read_exact(conn, &mut head, time::Duration::from_millis(10), true)?;
} else {
read_exact(conn, &mut head, time::Duration::from_secs(10), false)?;
}
let header = ser::deserialize::<MsgHeader>(&mut &head[..])?;
let max_len = max_msg_size(header.msg_type);
// TODO 4x the limits for now to leave ourselves space to change things
if header.msg_len > max_len * 4 {
error!(
"Too large read {}, had {}, wanted {}.",
header.msg_type as u8, max_len, header.msg_len
);
return Err(Error::Serialization(ser::Error::TooLargeReadErr));
}
Ok(header)
}
/// Read a message body from the provided connection, always blocking
/// until we have a result (or timeout).
pub fn read_body<T>(h: &MsgHeader, conn: &mut TcpStream) -> Result<T, Error>
where
T: Readable,
{
let mut body = vec![0u8; h.msg_len as usize];
read_exact(conn, &mut body, time::Duration::from_secs(20), true)?;
ser::deserialize(&mut &body[..]).map_err(From::from)
}
/// Reads a full message from the underlying connection.
pub fn read_message<T>(conn: &mut TcpStream, msg_type: Type) -> Result<T, Error>
where
T: Readable,
{
let header = read_header(conn, Some(msg_type))?;
if header.msg_type != msg_type {
return Err(Error::BadMessage);
}
read_body(&header, conn)
}
pub fn write_to_buf<T>(msg: T, msg_type: Type) -> Vec<u8>
where
T: Writeable,
{
// prepare the body first so we know its serialized length
let mut body_buf = vec![];
ser::serialize(&mut body_buf, &msg).unwrap();
// build and serialize the header using the body size
let mut msg_buf = vec![];
let blen = body_buf.len() as u64;
ser::serialize(&mut msg_buf, &MsgHeader::new(msg_type, blen)).unwrap();
msg_buf.append(&mut body_buf);
msg_buf
}
pub fn write_message<T>(conn: &mut TcpStream, msg: T, msg_type: Type) -> Result<(), Error>
where
T: Writeable + 'static,
{
let buf = write_to_buf(msg, msg_type);
// send the whole thing
conn.write_all(&buf[..])?;
Ok(())
}
/// Header of any protocol message, used to identify incoming messages.
pub struct MsgHeader {
magic: [u8; 2],
/// Type of the message.
pub msg_type: Type,
/// Total length of the message in bytes.
pub msg_len: u64,
}
impl MsgHeader {
/// Creates a new message header.
pub fn new(msg_type: Type, len: u64) -> MsgHeader {
MsgHeader {
magic: MAGIC,
msg_type: msg_type,
msg_len: len,
}
}
/// Serialized length of the header in bytes
pub fn serialized_len(&self) -> u64 {
HEADER_LEN
}
}
impl Writeable for MsgHeader {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(
writer,
[write_u8, self.magic[0]],
[write_u8, self.magic[1]],
[write_u8, self.msg_type as u8],
[write_u64, self.msg_len]
);
Ok(())
}
}
impl Readable for MsgHeader {
fn read(reader: &mut Reader) -> Result<MsgHeader, ser::Error> {
reader.expect_u8(MAGIC[0])?;
reader.expect_u8(MAGIC[1])?;
let (t, len) = ser_multiread!(reader, read_u8, read_u64);
match Type::from_u8(t) {
Some(ty) => Ok(MsgHeader {
magic: MAGIC,
msg_type: ty,
msg_len: len,
}),
None => Err(ser::Error::CorruptedData),
}
}
}
/// First part of a handshake, sender advertises its version and
/// characteristics.
pub struct Hand {
/// protocol version of the sender
pub version: u32,
/// capabilities of the sender
pub capabilities: Capabilities,
/// randomly generated for each handshake, helps detect self
pub nonce: u64,
/// genesis block of our chain, only connect to peers on the same chain
pub genesis: Hash,
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// network address of the sender
pub sender_addr: SockAddr,
/// network address of the receiver
pub receiver_addr: SockAddr,
/// name of version of the software
pub user_agent: String,
}
impl Writeable for Hand {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(
writer,
[write_u32, self.version],
[write_u32, self.capabilities.bits()],
[write_u64, self.nonce]
);
self.total_difficulty.write(writer).unwrap();
self.sender_addr.write(writer).unwrap();
self.receiver_addr.write(writer).unwrap();
writer.write_bytes(&self.user_agent).unwrap();
self.genesis.write(writer).unwrap();
Ok(())
}
}
impl Readable for Hand {
fn read(reader: &mut Reader) -> Result<Hand, ser::Error> {
let (version, capab, nonce) = ser_multiread!(reader, read_u32, read_u32, read_u64);
let capabilities = Capabilities::from_bits(capab).ok_or(ser::Error::CorruptedData)?;
let total_diff = Difficulty::read(reader)?;
let sender_addr = SockAddr::read(reader)?;
let receiver_addr = SockAddr::read(reader)?;
let ua = reader.read_vec()?;
let user_agent = String::from_utf8(ua).map_err(|_| ser::Error::CorruptedData)?;
let genesis = Hash::read(reader)?;
Ok(Hand {
version: version,
capabilities: capabilities,
nonce: nonce,
genesis: genesis,
total_difficulty: total_diff,
sender_addr: sender_addr,
receiver_addr: receiver_addr,
user_agent: user_agent,
})
}
}
/// Second part of a handshake, receiver of the first part replies with its own
/// version and characteristics.
pub struct Shake {
/// sender version
pub version: u32,
/// sender capabilities
pub capabilities: Capabilities,
/// genesis block of our chain, only connect to peers on the same chain
pub genesis: Hash,
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// name of version of the software
pub user_agent: String,
}
impl Writeable for Shake {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(
writer,
[write_u32, self.version],
[write_u32, self.capabilities.bits()]
);
self.total_difficulty.write(writer).unwrap();
writer.write_bytes(&self.user_agent).unwrap();
self.genesis.write(writer).unwrap();
Ok(())
}
}
impl Readable for Shake {
fn read(reader: &mut Reader) -> Result<Shake, ser::Error> {
let (version, capab) = ser_multiread!(reader, read_u32, read_u32);
let capabilities = Capabilities::from_bits(capab).ok_or(ser::Error::CorruptedData)?;
let total_diff = Difficulty::read(reader)?;
let ua = reader.read_vec()?;
let user_agent = String::from_utf8(ua).map_err(|_| ser::Error::CorruptedData)?;
let genesis = Hash::read(reader)?;
Ok(Shake {
version: version,
capabilities: capabilities,
genesis: genesis,
total_difficulty: total_diff,
user_agent: user_agent,
})
}
}
/// Ask for other peers addresses, required for network discovery.
pub struct GetPeerAddrs {
/// Filters on the capabilities we'd like the peers to have
pub capabilities: Capabilities,
}
impl Writeable for GetPeerAddrs {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u32(self.capabilities.bits())
}
}
impl Readable for GetPeerAddrs {
fn read(reader: &mut Reader) -> Result<GetPeerAddrs, ser::Error> {
let capab = reader.read_u32()?;
let capabilities = Capabilities::from_bits(capab).ok_or(ser::Error::CorruptedData)?;
Ok(GetPeerAddrs { capabilities })
}
}
/// Peer addresses we know of that are fresh enough, in response to
/// GetPeerAddrs.
#[derive(Debug)]
pub struct PeerAddrs {
pub peers: Vec<SockAddr>,
}
impl Writeable for PeerAddrs {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u32(self.peers.len() as u32)?;
for p in &self.peers {
p.write(writer).unwrap();
}
Ok(())
}
}
impl Readable for PeerAddrs {
fn read(reader: &mut Reader) -> Result<PeerAddrs, ser::Error> {
let peer_count = reader.read_u32()?;
if peer_count > MAX_PEER_ADDRS {
return Err(ser::Error::TooLargeReadErr);
} else if peer_count == 0 {
return Ok(PeerAddrs { peers: vec![] });
}
// let peers = try_map_vec!([0..peer_count], |_| SockAddr::read(reader));
let mut peers = Vec::with_capacity(peer_count as usize);
for _ in 0..peer_count {
peers.push(SockAddr::read(reader)?);
}
Ok(PeerAddrs { peers: peers })
}
}
/// We found some issue in the communication, sending an error back, usually
/// followed by closing the connection.
pub struct PeerError {
/// error code
pub code: u32,
/// slightly more user friendly message
pub message: String,
}
impl Writeable for PeerError {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(writer, [write_u32, self.code], [write_bytes, &self.message]);
Ok(())
}
}
impl Readable for PeerError {
fn read(reader: &mut Reader) -> Result<PeerError, ser::Error> {
let (code, msg) = ser_multiread!(reader, read_u32, read_vec);
let message = String::from_utf8(msg).map_err(|_| ser::Error::CorruptedData)?;
Ok(PeerError {
code: code,
message: message,
})
}
}
/// Only necessary so we can implement Readable and Writeable. Rust disallows
/// implementing traits when both types are outside of this crate (which is the
/// case for SocketAddr and Readable/Writeable).
#[derive(Debug)]
pub struct SockAddr(pub SocketAddr);
impl Writeable for SockAddr {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
match self.0 {
SocketAddr::V4(sav4) => {
ser_multiwrite!(
writer,
[write_u8, 0],
[write_fixed_bytes, &sav4.ip().octets().to_vec()],
[write_u16, sav4.port()]
);
}
SocketAddr::V6(sav6) => {
writer.write_u8(1)?;
for seg in &sav6.ip().segments() {
writer.write_u16(*seg)?;
}
writer.write_u16(sav6.port())?;
}
}
Ok(())
}
}
impl Readable for SockAddr {
fn read(reader: &mut Reader) -> Result<SockAddr, ser::Error> {
let v4_or_v6 = reader.read_u8()?;
if v4_or_v6 == 0 {
let ip = reader.read_fixed_bytes(4)?;
let port = reader.read_u16()?;
Ok(SockAddr(SocketAddr::V4(SocketAddrV4::new(
Ipv4Addr::new(ip[0], ip[1], ip[2], ip[3]),
port,
))))
} else {
let ip = try_iter_map_vec!(0..8, |_| reader.read_u16());
let port = reader.read_u16()?;
Ok(SockAddr(SocketAddr::V6(SocketAddrV6::new(
Ipv6Addr::new(ip[0], ip[1], ip[2], ip[3], ip[4], ip[5], ip[6], ip[7]),
port,
0,
0,
))))
}
}
}
/// Serializable wrapper for the block locator.
#[derive(Debug)]
pub struct Locator {
pub hashes: Vec<Hash>,
}
impl Writeable for Locator {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u8(self.hashes.len() as u8)?;
for h in &self.hashes {
h.write(writer)?
}
Ok(())
}
}
impl Readable for Locator {
fn read(reader: &mut Reader) -> Result<Locator, ser::Error> {
let len = reader.read_u8()?;
if len > (MAX_LOCATORS as u8) {
return Err(ser::Error::TooLargeReadErr);
}
let mut hashes = Vec::with_capacity(len as usize);
for _ in 0..len {
hashes.push(Hash::read(reader)?);
}
Ok(Locator { hashes: hashes })
}
}
/// Serializable wrapper for a list of block headers.
pub struct Headers {
pub headers: Vec<BlockHeader>,
}
impl Writeable for Headers {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u16(self.headers.len() as u16)?;
for h in &self.headers {
h.write(writer)?
}
Ok(())
}
}
impl Readable for Headers {
fn read(reader: &mut Reader) -> Result<Headers, ser::Error> {
let len = reader.read_u16()?;
if (len as u32) > MAX_BLOCK_HEADERS + 1 {
return Err(ser::Error::TooLargeReadErr);
}
let mut headers: Vec<BlockHeader> = Vec::with_capacity(len as usize);
for n in 0..len as usize {
let header = BlockHeader::read(reader)?;
if n > 0 && header.height != headers[n - 1].height + 1 {
return Err(ser::Error::CorruptedData);
}
headers.push(header);
}
Ok(Headers { headers: headers })
}
}
pub struct Ping {
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// total height
pub height: u64,
}
impl Writeable for Ping {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.total_difficulty.write(writer).unwrap();
self.height.write(writer).unwrap();
Ok(())
}
}
impl Readable for Ping {
fn read(reader: &mut Reader) -> Result<Ping, ser::Error> {
let total_difficulty = Difficulty::read(reader)?;
let height = reader.read_u64()?;
Ok(Ping {
total_difficulty,
height,
})
}
}
pub struct Pong {
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// height accumulated by sender
pub height: u64,
}
impl Writeable for Pong {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.total_difficulty.write(writer).unwrap();
self.height.write(writer).unwrap();
Ok(())
}
}
impl Readable for Pong {
fn read(reader: &mut Reader) -> Result<Pong, ser::Error> {
let total_difficulty = Difficulty::read(reader)?;
let height = reader.read_u64()?;
Ok(Pong {
total_difficulty,
height,
})
}
}
#[derive(Debug)]
pub struct BanReason {
/// the reason for the ban
pub ban_reason: ReasonForBan,
}
impl Writeable for BanReason {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
let ban_reason_i32 = self.ban_reason as i32;
ban_reason_i32.write(writer).unwrap();
Ok(())
}
}
impl Readable for BanReason {
fn read(reader: &mut Reader) -> Result<BanReason, ser::Error> {
let ban_reason_i32 = match reader.read_i32() {
Ok(h) => h,
Err(_) => 0,
};
let ban_reason = ReasonForBan::from_i32(ban_reason_i32).ok_or(ser::Error::CorruptedData)?;
Ok(BanReason { ban_reason })
}
}
/// Request to get an archive of the full txhashset store, required to sync
/// a new node.
pub struct TxHashSetRequest {
/// Hash of the block for which the txhashset should be provided
pub hash: Hash,
/// Height of the corresponding block
pub height: u64,
}
impl Writeable for TxHashSetRequest {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.hash.write(writer)?;
writer.write_u64(self.height)?;
Ok(())
}
}
impl Readable for TxHashSetRequest {
fn read(reader: &mut Reader) -> Result<TxHashSetRequest, ser::Error> {
Ok(TxHashSetRequest {
hash: Hash::read(reader)?,
height: reader.read_u64()?,
})
}
}
/// Response to a txhashset archive request, must include a zip stream of the
/// archive after the message body.
pub struct TxHashSetArchive {
/// Hash of the block for which the txhashset are provided
pub hash: Hash,
/// Height of the corresponding block
pub height: u64,
/// Size in bytes of the archive
pub bytes: u64,
}
impl Writeable for TxHashSetArchive {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.hash.write(writer)?;
ser_multiwrite!(writer, [write_u64, self.height], [write_u64, self.bytes]);
Ok(())
}
}
impl Readable for TxHashSetArchive {
fn read(reader: &mut Reader) -> Result<TxHashSetArchive, ser::Error> {
let hash = Hash::read(reader)?;
let (height, bytes) = ser_multiread!(reader, read_u64, read_u64);
Ok(TxHashSetArchive {
hash,
height,
bytes,
})
}
}