grin/core/src/ser.rs
Antioch Peverell 6036b671e8
fee and lock_height maintained in kernel features variants (#2859)
* fee and lock_height now maintained in kernel features enum variants

* sum fees via explicit enum variants

* cleanup semantics around with_fee and with_lock_height for tx builders

* document the kernel feature variants

* serialize kernel features correctly for api json

* cleanup

* commit

* bump to unstick azure
2019-08-19 14:28:02 +01:00

1386 lines
40 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Serialization and deserialization layer specialized for binary encoding.
//! Ensures consistency and safety. Basically a minimal subset or
//! rustc_serialize customized for our need.
//!
//! To use it simply implement `Writeable` or `Readable` and then use the
//! `serialize` or `deserialize` functions on them as appropriate.
use crate::core::hash::{DefaultHashable, Hash, Hashed};
use crate::global::PROTOCOL_VERSION;
use crate::keychain::{BlindingFactor, Identifier, IDENTIFIER_SIZE};
use crate::util::secp::constants::{
AGG_SIGNATURE_SIZE, COMPRESSED_PUBLIC_KEY_SIZE, MAX_PROOF_SIZE, PEDERSEN_COMMITMENT_SIZE,
SECRET_KEY_SIZE,
};
use crate::util::secp::key::PublicKey;
use crate::util::secp::pedersen::{Commitment, RangeProof};
use crate::util::secp::Signature;
use crate::util::secp::{ContextFlag, Secp256k1};
use byteorder::{BigEndian, ByteOrder, ReadBytesExt};
use std::fmt::{self, Debug};
use std::io::{self, Read, Write};
use std::marker;
use std::{cmp, error};
/// Possible errors deriving from serializing or deserializing.
#[derive(Clone, Eq, PartialEq, Debug, Serialize, Deserialize)]
pub enum Error {
/// Wraps an io error produced when reading or writing
IOErr(
String,
#[serde(
serialize_with = "serialize_error_kind",
deserialize_with = "deserialize_error_kind"
)]
io::ErrorKind,
),
/// Expected a given value that wasn't found
UnexpectedData {
/// What we wanted
expected: Vec<u8>,
/// What we got
received: Vec<u8>,
},
/// Data wasn't in a consumable format
CorruptedData,
/// Incorrect number of elements (when deserializing a vec via read_multi say).
CountError,
/// When asked to read too much data
TooLargeReadErr,
/// Error from from_hex deserialization
HexError(String),
/// Inputs/outputs/kernels must be sorted lexicographically.
SortError,
/// Inputs/outputs/kernels must be unique.
DuplicateError,
/// Block header version (hard-fork schedule).
InvalidBlockVersion,
}
impl From<io::Error> for Error {
fn from(e: io::Error) -> Error {
Error::IOErr(format!("{}", e), e.kind())
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Error::IOErr(ref e, ref _k) => write!(f, "{}", e),
Error::UnexpectedData {
expected: ref e,
received: ref r,
} => write!(f, "expected {:?}, got {:?}", e, r),
Error::CorruptedData => f.write_str("corrupted data"),
Error::CountError => f.write_str("count error"),
Error::SortError => f.write_str("sort order"),
Error::DuplicateError => f.write_str("duplicate"),
Error::TooLargeReadErr => f.write_str("too large read"),
Error::HexError(ref e) => write!(f, "hex error {:?}", e),
Error::InvalidBlockVersion => f.write_str("invalid block version"),
}
}
}
impl error::Error for Error {
fn cause(&self) -> Option<&dyn error::Error> {
match *self {
Error::IOErr(ref _e, ref _k) => Some(self),
_ => None,
}
}
fn description(&self) -> &str {
match *self {
Error::IOErr(ref e, _) => e,
Error::UnexpectedData { .. } => "unexpected data",
Error::CorruptedData => "corrupted data",
Error::CountError => "count error",
Error::SortError => "sort order",
Error::DuplicateError => "duplicate error",
Error::TooLargeReadErr => "too large read",
Error::HexError(_) => "hex error",
Error::InvalidBlockVersion => "invalid block version",
}
}
}
/// Signal to a serializable object how much of its data should be serialized
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum SerializationMode {
/// Serialize everything sufficiently to fully reconstruct the object
Full,
/// Serialize the data that defines the object
Hash,
}
/// Implementations defined how different numbers and binary structures are
/// written to an underlying stream or container (depending on implementation).
pub trait Writer {
/// The mode this serializer is writing in
fn serialization_mode(&self) -> SerializationMode;
/// Protocol version for version specific serialization rules.
fn protocol_version(&self) -> ProtocolVersion;
/// Writes a u8 as bytes
fn write_u8(&mut self, n: u8) -> Result<(), Error> {
self.write_fixed_bytes(&[n])
}
/// Writes a u16 as bytes
fn write_u16(&mut self, n: u16) -> Result<(), Error> {
let mut bytes = [0; 2];
BigEndian::write_u16(&mut bytes, n);
self.write_fixed_bytes(&bytes)
}
/// Writes a u32 as bytes
fn write_u32(&mut self, n: u32) -> Result<(), Error> {
let mut bytes = [0; 4];
BigEndian::write_u32(&mut bytes, n);
self.write_fixed_bytes(&bytes)
}
/// Writes a u32 as bytes
fn write_i32(&mut self, n: i32) -> Result<(), Error> {
let mut bytes = [0; 4];
BigEndian::write_i32(&mut bytes, n);
self.write_fixed_bytes(&bytes)
}
/// Writes a u64 as bytes
fn write_u64(&mut self, n: u64) -> Result<(), Error> {
let mut bytes = [0; 8];
BigEndian::write_u64(&mut bytes, n);
self.write_fixed_bytes(&bytes)
}
/// Writes a i64 as bytes
fn write_i64(&mut self, n: i64) -> Result<(), Error> {
let mut bytes = [0; 8];
BigEndian::write_i64(&mut bytes, n);
self.write_fixed_bytes(&bytes)
}
/// Writes a variable number of bytes. The length is encoded as a 64-bit
/// prefix.
fn write_bytes<T: AsFixedBytes>(&mut self, bytes: &T) -> Result<(), Error> {
self.write_u64(bytes.as_ref().len() as u64)?;
self.write_fixed_bytes(bytes)
}
/// Writes a fixed number of bytes from something that can turn itself into
/// a `&[u8]`. The reader is expected to know the actual length on read.
fn write_fixed_bytes<T: AsFixedBytes>(&mut self, fixed: &T) -> Result<(), Error>;
}
/// Implementations defined how different numbers and binary structures are
/// read from an underlying stream or container (depending on implementation).
pub trait Reader {
/// Read a u8 from the underlying Read
fn read_u8(&mut self) -> Result<u8, Error>;
/// Read a u16 from the underlying Read
fn read_u16(&mut self) -> Result<u16, Error>;
/// Read a u32 from the underlying Read
fn read_u32(&mut self) -> Result<u32, Error>;
/// Read a u64 from the underlying Read
fn read_u64(&mut self) -> Result<u64, Error>;
/// Read a i32 from the underlying Read
fn read_i32(&mut self) -> Result<i32, Error>;
/// Read a i64 from the underlying Read
fn read_i64(&mut self) -> Result<i64, Error>;
/// Read a u64 len prefix followed by that number of exact bytes.
fn read_bytes_len_prefix(&mut self) -> Result<Vec<u8>, Error>;
/// Read a fixed number of bytes from the underlying reader.
fn read_fixed_bytes(&mut self, length: usize) -> Result<Vec<u8>, Error>;
/// Consumes a byte from the reader, producing an error if it doesn't have
/// the expected value
fn expect_u8(&mut self, val: u8) -> Result<u8, Error>;
/// Access to underlying protocol version to support
/// version specific deserialization logic.
fn protocol_version(&self) -> ProtocolVersion;
}
/// Trait that every type that can be serialized as binary must implement.
/// Writes directly to a Writer, a utility type thinly wrapping an
/// underlying Write implementation.
pub trait Writeable {
/// Write the data held by this Writeable to the provided writer
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error>;
}
/// Reader that exposes an Iterator interface.
pub struct IteratingReader<'a, T> {
count: u64,
curr: u64,
reader: &'a mut dyn Reader,
_marker: marker::PhantomData<T>,
}
impl<'a, T> IteratingReader<'a, T> {
/// Constructor to create a new iterating reader for the provided underlying reader.
/// Takes a count so we know how many to iterate over.
pub fn new(reader: &'a mut dyn Reader, count: u64) -> IteratingReader<'a, T> {
let curr = 0;
IteratingReader {
count,
curr,
reader,
_marker: marker::PhantomData,
}
}
}
impl<'a, T> Iterator for IteratingReader<'a, T>
where
T: Readable,
{
type Item = T;
fn next(&mut self) -> Option<T> {
if self.curr >= self.count {
return None;
}
self.curr += 1;
T::read(self.reader).ok()
}
}
/// Reads multiple serialized items into a Vec.
pub fn read_multi<T>(reader: &mut dyn Reader, count: u64) -> Result<Vec<T>, Error>
where
T: Readable,
{
// Very rudimentary check to ensure we do not overflow anything
// attempting to read huge amounts of data.
// Probably better than checking if count * size overflows a u64 though.
if count > 1_000_000 {
return Err(Error::TooLargeReadErr);
}
let res: Vec<T> = IteratingReader::new(reader, count).collect();
if res.len() as u64 != count {
return Err(Error::CountError);
}
Ok(res)
}
/// Protocol version for serialization/deserialization.
/// Note: This is used in various places including but limited to
/// the p2p layer and our local db storage layer.
/// We may speak multiple versions to various peers and a potentially *different*
/// version for our local db.
#[derive(Clone, Copy, Debug, Deserialize, Eq, Ord, PartialOrd, PartialEq, Serialize)]
pub struct ProtocolVersion(pub u32);
impl ProtocolVersion {
/// Our default "local" protocol version.
pub fn local() -> ProtocolVersion {
ProtocolVersion(PROTOCOL_VERSION)
}
/// We need to specify a protocol version for our local database.
/// Regardless of specific version used when sending/receiving data between peers
/// we need to take care with serialization/deserialization of data locally in the db.
pub fn local_db() -> ProtocolVersion {
ProtocolVersion(1)
}
}
impl fmt::Display for ProtocolVersion {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl From<ProtocolVersion> for u32 {
fn from(v: ProtocolVersion) -> u32 {
v.0
}
}
impl Writeable for ProtocolVersion {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_u32(self.0)
}
}
impl Readable for ProtocolVersion {
fn read(reader: &mut dyn Reader) -> Result<ProtocolVersion, Error> {
let version = reader.read_u32()?;
Ok(ProtocolVersion(version))
}
}
/// Trait that every type that can be deserialized from binary must implement.
/// Reads directly to a Reader, a utility type thinly wrapping an
/// underlying Read implementation.
pub trait Readable
where
Self: Sized,
{
/// Reads the data necessary to this Readable from the provided reader
fn read(reader: &mut dyn Reader) -> Result<Self, Error>;
}
/// Deserializes a Readable from any std::io::Read implementation.
pub fn deserialize<T: Readable>(
source: &mut dyn Read,
version: ProtocolVersion,
) -> Result<T, Error> {
let mut reader = BinReader::new(source, version);
T::read(&mut reader)
}
/// Deserialize a Readable based on our default "local" protocol version.
pub fn deserialize_default<T: Readable>(source: &mut dyn Read) -> Result<T, Error> {
deserialize(source, ProtocolVersion::local())
}
/// Serializes a Writeable into any std::io::Write implementation.
pub fn serialize<W: Writeable>(
sink: &mut dyn Write,
version: ProtocolVersion,
thing: &W,
) -> Result<(), Error> {
let mut writer = BinWriter::new(sink, version);
thing.write(&mut writer)
}
/// Serialize a Writeable according to our default "local" protocol version.
pub fn serialize_default<W: Writeable>(sink: &mut dyn Write, thing: &W) -> Result<(), Error> {
serialize(sink, ProtocolVersion::local(), thing)
}
/// Utility function to serialize a writeable directly in memory using a
/// Vec<u8>.
pub fn ser_vec<W: Writeable>(thing: &W, version: ProtocolVersion) -> Result<Vec<u8>, Error> {
let mut vec = vec![];
serialize(&mut vec, version, thing)?;
Ok(vec)
}
/// Utility to read from a binary source
pub struct BinReader<'a> {
source: &'a mut dyn Read,
version: ProtocolVersion,
}
impl<'a> BinReader<'a> {
/// Constructor for a new BinReader for the provided source and protocol version.
pub fn new(source: &'a mut dyn Read, version: ProtocolVersion) -> BinReader<'a> {
BinReader { source, version }
}
}
fn map_io_err(err: io::Error) -> Error {
Error::IOErr(format!("{}", err), err.kind())
}
/// Utility wrapper for an underlying byte Reader. Defines higher level methods
/// to read numbers, byte vectors, hashes, etc.
impl<'a> Reader for BinReader<'a> {
fn read_u8(&mut self) -> Result<u8, Error> {
self.source.read_u8().map_err(map_io_err)
}
fn read_u16(&mut self) -> Result<u16, Error> {
self.source.read_u16::<BigEndian>().map_err(map_io_err)
}
fn read_u32(&mut self) -> Result<u32, Error> {
self.source.read_u32::<BigEndian>().map_err(map_io_err)
}
fn read_i32(&mut self) -> Result<i32, Error> {
self.source.read_i32::<BigEndian>().map_err(map_io_err)
}
fn read_u64(&mut self) -> Result<u64, Error> {
self.source.read_u64::<BigEndian>().map_err(map_io_err)
}
fn read_i64(&mut self) -> Result<i64, Error> {
self.source.read_i64::<BigEndian>().map_err(map_io_err)
}
/// Read a variable size vector from the underlying Read. Expects a usize
fn read_bytes_len_prefix(&mut self) -> Result<Vec<u8>, Error> {
let len = self.read_u64()?;
self.read_fixed_bytes(len as usize)
}
/// Read a fixed number of bytes.
fn read_fixed_bytes(&mut self, len: usize) -> Result<Vec<u8>, Error> {
// not reading more than 100k bytes in a single read
if len > 100_000 {
return Err(Error::TooLargeReadErr);
}
let mut buf = vec![0; len];
self.source
.read_exact(&mut buf)
.map(move |_| buf)
.map_err(map_io_err)
}
fn expect_u8(&mut self, val: u8) -> Result<u8, Error> {
let b = self.read_u8()?;
if b == val {
Ok(b)
} else {
Err(Error::UnexpectedData {
expected: vec![val],
received: vec![b],
})
}
}
fn protocol_version(&self) -> ProtocolVersion {
self.version
}
}
/// A reader that reads straight off a stream.
/// Tracks total bytes read so we can verify we read the right number afterwards.
pub struct StreamingReader<'a> {
total_bytes_read: u64,
version: ProtocolVersion,
stream: &'a mut dyn Read,
}
impl<'a> StreamingReader<'a> {
/// Create a new streaming reader with the provided underlying stream.
/// Also takes a duration to be used for each individual read_exact call.
pub fn new(stream: &'a mut dyn Read, version: ProtocolVersion) -> StreamingReader<'a> {
StreamingReader {
total_bytes_read: 0,
version,
stream,
}
}
/// Returns the total bytes read via this streaming reader.
pub fn total_bytes_read(&self) -> u64 {
self.total_bytes_read
}
}
/// Note: We use read_fixed_bytes() here to ensure our "async" I/O behaves as expected.
impl<'a> Reader for StreamingReader<'a> {
fn read_u8(&mut self) -> Result<u8, Error> {
let buf = self.read_fixed_bytes(1)?;
Ok(buf[0])
}
fn read_u16(&mut self) -> Result<u16, Error> {
let buf = self.read_fixed_bytes(2)?;
Ok(BigEndian::read_u16(&buf[..]))
}
fn read_u32(&mut self) -> Result<u32, Error> {
let buf = self.read_fixed_bytes(4)?;
Ok(BigEndian::read_u32(&buf[..]))
}
fn read_i32(&mut self) -> Result<i32, Error> {
let buf = self.read_fixed_bytes(4)?;
Ok(BigEndian::read_i32(&buf[..]))
}
fn read_u64(&mut self) -> Result<u64, Error> {
let buf = self.read_fixed_bytes(8)?;
Ok(BigEndian::read_u64(&buf[..]))
}
fn read_i64(&mut self) -> Result<i64, Error> {
let buf = self.read_fixed_bytes(8)?;
Ok(BigEndian::read_i64(&buf[..]))
}
/// Read a variable size vector from the underlying stream. Expects a usize
fn read_bytes_len_prefix(&mut self) -> Result<Vec<u8>, Error> {
let len = self.read_u64()?;
self.total_bytes_read += 8;
self.read_fixed_bytes(len as usize)
}
/// Read a fixed number of bytes.
fn read_fixed_bytes(&mut self, len: usize) -> Result<Vec<u8>, Error> {
let mut buf = vec![0u8; len];
self.stream.read_exact(&mut buf)?;
self.total_bytes_read += len as u64;
Ok(buf)
}
fn expect_u8(&mut self, val: u8) -> Result<u8, Error> {
let b = self.read_u8()?;
if b == val {
Ok(b)
} else {
Err(Error::UnexpectedData {
expected: vec![val],
received: vec![b],
})
}
}
fn protocol_version(&self) -> ProtocolVersion {
self.version
}
}
impl Readable for Commitment {
fn read(reader: &mut dyn Reader) -> Result<Commitment, Error> {
let a = reader.read_fixed_bytes(PEDERSEN_COMMITMENT_SIZE)?;
let mut c = [0; PEDERSEN_COMMITMENT_SIZE];
c[..PEDERSEN_COMMITMENT_SIZE].clone_from_slice(&a[..PEDERSEN_COMMITMENT_SIZE]);
Ok(Commitment(c))
}
}
impl Writeable for Commitment {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_fixed_bytes(self)
}
}
impl Writeable for BlindingFactor {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_fixed_bytes(self)
}
}
impl Readable for BlindingFactor {
fn read(reader: &mut dyn Reader) -> Result<BlindingFactor, Error> {
let bytes = reader.read_fixed_bytes(BlindingFactor::LEN)?;
Ok(BlindingFactor::from_slice(&bytes))
}
}
impl FixedLength for BlindingFactor {
const LEN: usize = SECRET_KEY_SIZE;
}
impl Writeable for Identifier {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_fixed_bytes(self)
}
}
impl Readable for Identifier {
fn read(reader: &mut dyn Reader) -> Result<Identifier, Error> {
let bytes = reader.read_fixed_bytes(IDENTIFIER_SIZE)?;
Ok(Identifier::from_bytes(&bytes))
}
}
impl Writeable for RangeProof {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_bytes(self)
}
}
impl Readable for RangeProof {
fn read(reader: &mut dyn Reader) -> Result<RangeProof, Error> {
let len = reader.read_u64()?;
let max_len = cmp::min(len as usize, MAX_PROOF_SIZE);
let p = reader.read_fixed_bytes(max_len)?;
let mut proof = [0; MAX_PROOF_SIZE];
proof[..p.len()].clone_from_slice(&p[..]);
Ok(RangeProof {
plen: proof.len(),
proof,
})
}
}
impl FixedLength for RangeProof {
const LEN: usize = 8 // length prefix
+ MAX_PROOF_SIZE;
}
impl PMMRable for RangeProof {
type E = Self;
fn as_elmt(&self) -> Self::E {
self.clone()
}
}
impl Readable for Signature {
fn read(reader: &mut dyn Reader) -> Result<Signature, Error> {
let a = reader.read_fixed_bytes(Signature::LEN)?;
let mut c = [0; Signature::LEN];
c[..Signature::LEN].clone_from_slice(&a[..Signature::LEN]);
Ok(Signature::from_raw_data(&c).unwrap())
}
}
impl Writeable for Signature {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_fixed_bytes(self)
}
}
impl FixedLength for Signature {
const LEN: usize = AGG_SIGNATURE_SIZE;
}
impl FixedLength for PublicKey {
const LEN: usize = COMPRESSED_PUBLIC_KEY_SIZE;
}
impl Writeable for PublicKey {
// Write the public key in compressed form
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
let secp = Secp256k1::with_caps(ContextFlag::None);
writer.write_fixed_bytes(&self.serialize_vec(&secp, true).as_ref())?;
Ok(())
}
}
impl Readable for PublicKey {
// Read the public key in compressed form
fn read(reader: &mut dyn Reader) -> Result<Self, Error> {
let buf = reader.read_fixed_bytes(PublicKey::LEN)?;
let secp = Secp256k1::with_caps(ContextFlag::None);
let pk = PublicKey::from_slice(&secp, &buf).map_err(|_| Error::CorruptedData)?;
Ok(pk)
}
}
/// Collections of items must be sorted lexicographically and all unique.
pub trait VerifySortedAndUnique<T> {
/// Verify a collection of items is sorted and all unique.
fn verify_sorted_and_unique(&self) -> Result<(), Error>;
}
impl<T: Hashed> VerifySortedAndUnique<T> for Vec<T> {
fn verify_sorted_and_unique(&self) -> Result<(), Error> {
let hashes = self.iter().map(|item| item.hash()).collect::<Vec<_>>();
let pairs = hashes.windows(2);
for pair in pairs {
if pair[0] > pair[1] {
return Err(Error::SortError);
} else if pair[0] == pair[1] {
return Err(Error::DuplicateError);
}
}
Ok(())
}
}
/// Utility wrapper for an underlying byte Writer. Defines higher level methods
/// to write numbers, byte vectors, hashes, etc.
pub struct BinWriter<'a> {
sink: &'a mut dyn Write,
version: ProtocolVersion,
}
impl<'a> BinWriter<'a> {
/// Wraps a standard Write in a new BinWriter
pub fn new(sink: &'a mut dyn Write, version: ProtocolVersion) -> BinWriter<'a> {
BinWriter { sink, version }
}
/// Constructor for BinWriter with default "local" protocol version.
pub fn default(sink: &'a mut dyn Write) -> BinWriter<'a> {
BinWriter::new(sink, ProtocolVersion::local())
}
}
impl<'a> Writer for BinWriter<'a> {
fn serialization_mode(&self) -> SerializationMode {
SerializationMode::Full
}
fn write_fixed_bytes<T: AsFixedBytes>(&mut self, fixed: &T) -> Result<(), Error> {
let bs = fixed.as_ref();
self.sink.write_all(bs)?;
Ok(())
}
fn protocol_version(&self) -> ProtocolVersion {
self.version
}
}
macro_rules! impl_int {
($int:ty, $w_fn:ident, $r_fn:ident) => {
impl Writeable for $int {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.$w_fn(*self)
}
}
impl Readable for $int {
fn read(reader: &mut dyn Reader) -> Result<$int, Error> {
reader.$r_fn()
}
}
};
}
impl_int!(u8, write_u8, read_u8);
impl_int!(u16, write_u16, read_u16);
impl_int!(u32, write_u32, read_u32);
impl_int!(i32, write_i32, read_i32);
impl_int!(u64, write_u64, read_u64);
impl_int!(i64, write_i64, read_i64);
impl<T> Readable for Vec<T>
where
T: Readable,
{
fn read(reader: &mut dyn Reader) -> Result<Vec<T>, Error> {
let mut buf = Vec::new();
loop {
let elem = T::read(reader);
match elem {
Ok(e) => buf.push(e),
Err(Error::IOErr(ref _d, ref kind)) if *kind == io::ErrorKind::UnexpectedEof => {
break;
}
Err(e) => return Err(e),
}
}
Ok(buf)
}
}
impl<T> Writeable for Vec<T>
where
T: Writeable,
{
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
for elmt in self {
elmt.write(writer)?;
}
Ok(())
}
}
impl<'a, A: Writeable> Writeable for &'a A {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
Writeable::write(*self, writer)
}
}
impl<A: Writeable, B: Writeable> Writeable for (A, B) {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
Writeable::write(&self.0, writer)?;
Writeable::write(&self.1, writer)
}
}
impl<A: Readable, B: Readable> Readable for (A, B) {
fn read(reader: &mut dyn Reader) -> Result<(A, B), Error> {
Ok((Readable::read(reader)?, Readable::read(reader)?))
}
}
impl<A: Writeable, B: Writeable, C: Writeable> Writeable for (A, B, C) {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
Writeable::write(&self.0, writer)?;
Writeable::write(&self.1, writer)?;
Writeable::write(&self.2, writer)
}
}
impl<A: Writeable, B: Writeable, C: Writeable, D: Writeable> Writeable for (A, B, C, D) {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
Writeable::write(&self.0, writer)?;
Writeable::write(&self.1, writer)?;
Writeable::write(&self.2, writer)?;
Writeable::write(&self.3, writer)
}
}
impl<A: Readable, B: Readable, C: Readable> Readable for (A, B, C) {
fn read(reader: &mut dyn Reader) -> Result<(A, B, C), Error> {
Ok((
Readable::read(reader)?,
Readable::read(reader)?,
Readable::read(reader)?,
))
}
}
impl<A: Readable, B: Readable, C: Readable, D: Readable> Readable for (A, B, C, D) {
fn read(reader: &mut dyn Reader) -> Result<(A, B, C, D), Error> {
Ok((
Readable::read(reader)?,
Readable::read(reader)?,
Readable::read(reader)?,
Readable::read(reader)?,
))
}
}
impl Writeable for [u8; 4] {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_bytes(self)
}
}
/// Trait for types that serialize to a known fixed length.
pub trait FixedLength {
/// The length in bytes
const LEN: usize;
}
/// Trait for types that can be added to a PMMR.
pub trait PMMRable: Writeable + Clone + Debug + DefaultHashable {
/// The type of element actually stored in the MMR data file.
/// This allows us to store Hash elements in the header MMR for variable size BlockHeaders.
type E: FixedLength + Readable + Writeable + Debug;
/// Convert the pmmrable into the element to be stored in the MMR data file.
fn as_elmt(&self) -> Self::E;
}
/// Generic trait to ensure PMMR elements can be hashed with an index
pub trait PMMRIndexHashable {
/// Hash with a given index
fn hash_with_index(&self, index: u64) -> Hash;
}
impl<T: DefaultHashable> PMMRIndexHashable for T {
fn hash_with_index(&self, index: u64) -> Hash {
(index, self).hash()
}
}
/// Useful marker trait on types that can be sized byte slices
pub trait AsFixedBytes: Sized + AsRef<[u8]> {
/// The length in bytes
fn len(&self) -> usize;
}
impl<'a> AsFixedBytes for &'a [u8] {
fn len(&self) -> usize {
1
}
}
impl AsFixedBytes for Vec<u8> {
fn len(&self) -> usize {
self.len()
}
}
impl AsFixedBytes for [u8; 1] {
fn len(&self) -> usize {
1
}
}
impl AsFixedBytes for [u8; 2] {
fn len(&self) -> usize {
2
}
}
impl AsFixedBytes for [u8; 4] {
fn len(&self) -> usize {
4
}
}
impl AsFixedBytes for [u8; 6] {
fn len(&self) -> usize {
6
}
}
impl AsFixedBytes for [u8; 8] {
fn len(&self) -> usize {
8
}
}
impl AsFixedBytes for [u8; 20] {
fn len(&self) -> usize {
20
}
}
impl AsFixedBytes for [u8; 32] {
fn len(&self) -> usize {
32
}
}
impl AsFixedBytes for String {
fn len(&self) -> usize {
self.len()
}
}
impl AsFixedBytes for crate::core::hash::Hash {
fn len(&self) -> usize {
32
}
}
impl AsFixedBytes for crate::util::secp::pedersen::RangeProof {
fn len(&self) -> usize {
self.plen
}
}
impl AsFixedBytes for crate::util::secp::Signature {
fn len(&self) -> usize {
64
}
}
impl AsFixedBytes for crate::util::secp::pedersen::Commitment {
fn len(&self) -> usize {
PEDERSEN_COMMITMENT_SIZE
}
}
impl AsFixedBytes for BlindingFactor {
fn len(&self) -> usize {
SECRET_KEY_SIZE
}
}
impl AsFixedBytes for crate::keychain::Identifier {
fn len(&self) -> usize {
IDENTIFIER_SIZE
}
}
// serializer for io::Errorkind, originally auto-generated by serde-derive
// slightly modified to handle the #[non_exhaustive] tag on io::ErrorKind
fn serialize_error_kind<S>(
kind: &io::ErrorKind,
serializer: S,
) -> serde::export::Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
match *kind {
io::ErrorKind::NotFound => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 0u32, "NotFound")
}
io::ErrorKind::PermissionDenied => serde::Serializer::serialize_unit_variant(
serializer,
"ErrorKind",
1u32,
"PermissionDenied",
),
io::ErrorKind::ConnectionRefused => serde::Serializer::serialize_unit_variant(
serializer,
"ErrorKind",
2u32,
"ConnectionRefused",
),
io::ErrorKind::ConnectionReset => serde::Serializer::serialize_unit_variant(
serializer,
"ErrorKind",
3u32,
"ConnectionReset",
),
io::ErrorKind::ConnectionAborted => serde::Serializer::serialize_unit_variant(
serializer,
"ErrorKind",
4u32,
"ConnectionAborted",
),
io::ErrorKind::NotConnected => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 5u32, "NotConnected")
}
io::ErrorKind::AddrInUse => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 6u32, "AddrInUse")
}
io::ErrorKind::AddrNotAvailable => serde::Serializer::serialize_unit_variant(
serializer,
"ErrorKind",
7u32,
"AddrNotAvailable",
),
io::ErrorKind::BrokenPipe => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 8u32, "BrokenPipe")
}
io::ErrorKind::AlreadyExists => serde::Serializer::serialize_unit_variant(
serializer,
"ErrorKind",
9u32,
"AlreadyExists",
),
io::ErrorKind::WouldBlock => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 10u32, "WouldBlock")
}
io::ErrorKind::InvalidInput => serde::Serializer::serialize_unit_variant(
serializer,
"ErrorKind",
11u32,
"InvalidInput",
),
io::ErrorKind::InvalidData => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 12u32, "InvalidData")
}
io::ErrorKind::TimedOut => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 13u32, "TimedOut")
}
io::ErrorKind::WriteZero => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 14u32, "WriteZero")
}
io::ErrorKind::Interrupted => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 15u32, "Interrupted")
}
io::ErrorKind::Other => {
serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 16u32, "Other")
}
io::ErrorKind::UnexpectedEof => serde::Serializer::serialize_unit_variant(
serializer,
"ErrorKind",
17u32,
"UnexpectedEof",
),
// #[non_exhaustive] is used on the definition of ErrorKind for future compatability
// That means match statements always need to match on _.
// The downside here is that rustc won't be able to warn us if io::ErrorKind another
// field is added to io::ErrorKind
_ => serde::Serializer::serialize_unit_variant(serializer, "ErrorKind", 16u32, "Other"),
}
}
// deserializer for io::Errorkind, originally auto-generated by serde-derive
fn deserialize_error_kind<'de, D>(deserializer: D) -> serde::export::Result<io::ErrorKind, D::Error>
where
D: serde::Deserializer<'de>,
{
#[allow(non_camel_case_types)]
enum Field {
field0,
field1,
field2,
field3,
field4,
field5,
field6,
field7,
field8,
field9,
field10,
field11,
field12,
field13,
field14,
field15,
field16,
field17,
}
struct FieldVisitor;
impl<'de> serde::de::Visitor<'de> for FieldVisitor {
type Value = Field;
fn expecting(
&self,
formatter: &mut serde::export::Formatter,
) -> serde::export::fmt::Result {
serde::export::Formatter::write_str(formatter, "variant identifier")
}
fn visit_u64<E>(self, value: u64) -> serde::export::Result<Self::Value, E>
where
E: serde::de::Error,
{
match value {
0u64 => serde::export::Ok(Field::field0),
1u64 => serde::export::Ok(Field::field1),
2u64 => serde::export::Ok(Field::field2),
3u64 => serde::export::Ok(Field::field3),
4u64 => serde::export::Ok(Field::field4),
5u64 => serde::export::Ok(Field::field5),
6u64 => serde::export::Ok(Field::field6),
7u64 => serde::export::Ok(Field::field7),
8u64 => serde::export::Ok(Field::field8),
9u64 => serde::export::Ok(Field::field9),
10u64 => serde::export::Ok(Field::field10),
11u64 => serde::export::Ok(Field::field11),
12u64 => serde::export::Ok(Field::field12),
13u64 => serde::export::Ok(Field::field13),
14u64 => serde::export::Ok(Field::field14),
15u64 => serde::export::Ok(Field::field15),
16u64 => serde::export::Ok(Field::field16),
17u64 => serde::export::Ok(Field::field17),
_ => serde::export::Err(serde::de::Error::invalid_value(
serde::de::Unexpected::Unsigned(value),
&"variant index 0 <= i < 18",
)),
}
}
fn visit_str<E>(self, value: &str) -> serde::export::Result<Self::Value, E>
where
E: serde::de::Error,
{
match value {
"NotFound" => serde::export::Ok(Field::field0),
"PermissionDenied" => serde::export::Ok(Field::field1),
"ConnectionRefused" => serde::export::Ok(Field::field2),
"ConnectionReset" => serde::export::Ok(Field::field3),
"ConnectionAborted" => serde::export::Ok(Field::field4),
"NotConnected" => serde::export::Ok(Field::field5),
"AddrInUse" => serde::export::Ok(Field::field6),
"AddrNotAvailable" => serde::export::Ok(Field::field7),
"BrokenPipe" => serde::export::Ok(Field::field8),
"AlreadyExists" => serde::export::Ok(Field::field9),
"WouldBlock" => serde::export::Ok(Field::field10),
"InvalidInput" => serde::export::Ok(Field::field11),
"InvalidData" => serde::export::Ok(Field::field12),
"TimedOut" => serde::export::Ok(Field::field13),
"WriteZero" => serde::export::Ok(Field::field14),
"Interrupted" => serde::export::Ok(Field::field15),
"Other" => serde::export::Ok(Field::field16),
"UnexpectedEof" => serde::export::Ok(Field::field17),
_ => serde::export::Err(serde::de::Error::unknown_variant(value, VARIANTS)),
}
}
fn visit_bytes<E>(self, value: &[u8]) -> serde::export::Result<Self::Value, E>
where
E: serde::de::Error,
{
match value {
b"NotFound" => serde::export::Ok(Field::field0),
b"PermissionDenied" => serde::export::Ok(Field::field1),
b"ConnectionRefused" => serde::export::Ok(Field::field2),
b"ConnectionReset" => serde::export::Ok(Field::field3),
b"ConnectionAborted" => serde::export::Ok(Field::field4),
b"NotConnected" => serde::export::Ok(Field::field5),
b"AddrInUse" => serde::export::Ok(Field::field6),
b"AddrNotAvailable" => serde::export::Ok(Field::field7),
b"BrokenPipe" => serde::export::Ok(Field::field8),
b"AlreadyExists" => serde::export::Ok(Field::field9),
b"WouldBlock" => serde::export::Ok(Field::field10),
b"InvalidInput" => serde::export::Ok(Field::field11),
b"InvalidData" => serde::export::Ok(Field::field12),
b"TimedOut" => serde::export::Ok(Field::field13),
b"WriteZero" => serde::export::Ok(Field::field14),
b"Interrupted" => serde::export::Ok(Field::field15),
b"Other" => serde::export::Ok(Field::field16),
b"UnexpectedEof" => serde::export::Ok(Field::field17),
_ => {
let value = &serde::export::from_utf8_lossy(value);
serde::export::Err(serde::de::Error::unknown_variant(value, VARIANTS))
}
}
}
}
impl<'de> serde::Deserialize<'de> for Field {
#[inline]
fn deserialize<D>(deserializer: D) -> serde::export::Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
serde::Deserializer::deserialize_identifier(deserializer, FieldVisitor)
}
}
struct Visitor<'de> {
marker: serde::export::PhantomData<io::ErrorKind>,
lifetime: serde::export::PhantomData<&'de ()>,
}
impl<'de> serde::de::Visitor<'de> for Visitor<'de> {
type Value = io::ErrorKind;
fn expecting(
&self,
formatter: &mut serde::export::Formatter,
) -> serde::export::fmt::Result {
serde::export::Formatter::write_str(formatter, "enum io::ErrorKind")
}
fn visit_enum<A>(self, data: A) -> serde::export::Result<Self::Value, A::Error>
where
A: serde::de::EnumAccess<'de>,
{
match match serde::de::EnumAccess::variant(data) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
} {
(Field::field0, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::NotFound)
}
(Field::field1, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::PermissionDenied)
}
(Field::field2, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::ConnectionRefused)
}
(Field::field3, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::ConnectionReset)
}
(Field::field4, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::ConnectionAborted)
}
(Field::field5, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::NotConnected)
}
(Field::field6, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::AddrInUse)
}
(Field::field7, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::AddrNotAvailable)
}
(Field::field8, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::BrokenPipe)
}
(Field::field9, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::AlreadyExists)
}
(Field::field10, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::WouldBlock)
}
(Field::field11, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::InvalidInput)
}
(Field::field12, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::InvalidData)
}
(Field::field13, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::TimedOut)
}
(Field::field14, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::WriteZero)
}
(Field::field15, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::Interrupted)
}
(Field::field16, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::Other)
}
(Field::field17, variant) => {
match serde::de::VariantAccess::unit_variant(variant) {
serde::export::Ok(val) => val,
serde::export::Err(err) => {
return serde::export::Err(err);
}
};
serde::export::Ok(io::ErrorKind::UnexpectedEof)
}
}
}
}
const VARIANTS: &'static [&'static str] = &[
"NotFound",
"PermissionDenied",
"ConnectionRefused",
"ConnectionReset",
"ConnectionAborted",
"NotConnected",
"AddrInUse",
"AddrNotAvailable",
"BrokenPipe",
"AlreadyExists",
"WouldBlock",
"InvalidInput",
"InvalidData",
"TimedOut",
"WriteZero",
"Interrupted",
"Other",
"UnexpectedEof",
];
serde::Deserializer::deserialize_enum(
deserializer,
"ErrorKind",
VARIANTS,
Visitor {
marker: serde::export::PhantomData::<io::ErrorKind>,
lifetime: serde::export::PhantomData,
},
)
}