grin/p2p/src/msg.rs
hashmap d3dbafa80b
[2.x.x] Use blocking IO in P2P to reduce CPU load (#2855)
* Use blocking IO in P2P to reduce CPU load
2019-07-12 23:17:38 +02:00

710 lines
19 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Message types that transit over the network and related serialization code.
use crate::core::core::hash::Hash;
use crate::core::core::BlockHeader;
use crate::core::pow::Difficulty;
use crate::core::ser::{
self, FixedLength, ProtocolVersion, Readable, Reader, StreamingReader, Writeable, Writer,
};
use crate::core::{consensus, global};
use crate::types::{
Capabilities, Error, PeerAddr, ReasonForBan, MAX_BLOCK_HEADERS, MAX_LOCATORS, MAX_PEER_ADDRS,
};
use num::FromPrimitive;
use std::io::{Read, Write};
/// Grin's user agent with current version
pub const USER_AGENT: &'static str = concat!("MW/Grin ", env!("CARGO_PKG_VERSION"));
/// Magic numbers expected in the header of every message
const OTHER_MAGIC: [u8; 2] = [73, 43];
const FLOONET_MAGIC: [u8; 2] = [83, 59];
const MAINNET_MAGIC: [u8; 2] = [97, 61];
// Types of messages.
// Note: Values here are *important* so we should only add new values at the
// end.
enum_from_primitive! {
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Type {
Error = 0,
Hand = 1,
Shake = 2,
Ping = 3,
Pong = 4,
GetPeerAddrs = 5,
PeerAddrs = 6,
GetHeaders = 7,
Header = 8,
Headers = 9,
GetBlock = 10,
Block = 11,
GetCompactBlock = 12,
CompactBlock = 13,
StemTransaction = 14,
Transaction = 15,
TxHashSetRequest = 16,
TxHashSetArchive = 17,
BanReason = 18,
GetTransaction = 19,
TransactionKernel = 20,
KernelDataRequest = 21,
KernelDataResponse = 22,
}
}
/// Max theoretical size of a block filled with outputs.
fn max_block_size() -> u64 {
(global::max_block_weight() / consensus::BLOCK_OUTPUT_WEIGHT * 708) as u64
}
// Max msg size when msg type is unknown.
fn default_max_msg_size() -> u64 {
max_block_size()
}
// Max msg size for each msg type.
fn max_msg_size(msg_type: Type) -> u64 {
match msg_type {
Type::Error => 0,
Type::Hand => 128,
Type::Shake => 88,
Type::Ping => 16,
Type::Pong => 16,
Type::GetPeerAddrs => 4,
Type::PeerAddrs => 4 + (1 + 16 + 2) * MAX_PEER_ADDRS as u64,
Type::GetHeaders => 1 + 32 * MAX_LOCATORS as u64,
Type::Header => 365,
Type::Headers => 2 + 365 * MAX_BLOCK_HEADERS as u64,
Type::GetBlock => 32,
Type::Block => max_block_size(),
Type::GetCompactBlock => 32,
Type::CompactBlock => max_block_size() / 10,
Type::StemTransaction => max_block_size(),
Type::Transaction => max_block_size(),
Type::TxHashSetRequest => 40,
Type::TxHashSetArchive => 64,
Type::BanReason => 64,
Type::GetTransaction => 32,
Type::TransactionKernel => 32,
Type::KernelDataRequest => 0,
Type::KernelDataResponse => 8,
}
}
fn magic() -> [u8; 2] {
match *global::CHAIN_TYPE.read() {
global::ChainTypes::Floonet => FLOONET_MAGIC,
global::ChainTypes::Mainnet => MAINNET_MAGIC,
_ => OTHER_MAGIC,
}
}
/// Read a header from the provided stream without blocking if the
/// underlying stream is async. Typically headers will be polled for, so
/// we do not want to block.
///
/// Note: We return a MsgHeaderWrapper here as we may encounter an unknown msg type.
///
pub fn read_header(
stream: &mut dyn Read,
version: ProtocolVersion,
) -> Result<MsgHeaderWrapper, Error> {
let mut head = vec![0u8; MsgHeader::LEN];
stream.read_exact(&mut head)?;
let header = ser::deserialize::<MsgHeaderWrapper>(&mut &head[..], version)?;
Ok(header)
}
/// Read a single item from the provided stream, always blocking until we
/// have a result (or timeout).
/// Returns the item and the total bytes read.
pub fn read_item<T: Readable>(
stream: &mut dyn Read,
version: ProtocolVersion,
) -> Result<(T, u64), Error> {
let mut reader = StreamingReader::new(stream, version);
let res = T::read(&mut reader)?;
Ok((res, reader.total_bytes_read()))
}
/// Read a message body from the provided stream, always blocking
/// until we have a result (or timeout).
pub fn read_body<T: Readable>(
h: &MsgHeader,
stream: &mut dyn Read,
version: ProtocolVersion,
) -> Result<T, Error> {
let mut body = vec![0u8; h.msg_len as usize];
stream.read_exact(&mut body)?;
ser::deserialize(&mut &body[..], version).map_err(From::from)
}
/// Read (an unknown) message from the provided stream and discard it.
pub fn read_discard(msg_len: u64, stream: &mut dyn Read) -> Result<(), Error> {
let mut buffer = vec![0u8; msg_len as usize];
stream.read_exact(&mut buffer)?;
Ok(())
}
/// Reads a full message from the underlying stream.
pub fn read_message<T: Readable>(
stream: &mut dyn Read,
version: ProtocolVersion,
msg_type: Type,
) -> Result<T, Error> {
match read_header(stream, version)? {
MsgHeaderWrapper::Known(header) => {
if header.msg_type == msg_type {
read_body(&header, stream, version)
} else {
Err(Error::BadMessage)
}
}
MsgHeaderWrapper::Unknown(msg_len) => {
read_discard(msg_len, stream)?;
Err(Error::BadMessage)
}
}
}
pub fn write_to_buf<T: Writeable>(
msg: T,
msg_type: Type,
version: ProtocolVersion,
) -> Result<Vec<u8>, Error> {
// prepare the body first so we know its serialized length
let mut body_buf = vec![];
ser::serialize(&mut body_buf, version, &msg)?;
// build and serialize the header using the body size
let mut msg_buf = vec![];
let blen = body_buf.len() as u64;
ser::serialize(&mut msg_buf, version, &MsgHeader::new(msg_type, blen))?;
msg_buf.append(&mut body_buf);
Ok(msg_buf)
}
pub fn write_message<T: Writeable>(
stream: &mut dyn Write,
msg: T,
msg_type: Type,
version: ProtocolVersion,
) -> Result<(), Error> {
let buf = write_to_buf(msg, msg_type, version)?;
stream.write_all(&buf[..])?;
Ok(())
}
/// A wrapper around a message header. If the header is for an unknown msg type
/// then we will be unable to parse the msg itself (just a bunch of random bytes).
/// But we need to know how many bytes to discard to discard the full message.
#[derive(Clone)]
pub enum MsgHeaderWrapper {
/// A "known" msg type with deserialized msg header.
Known(MsgHeader),
/// An unknown msg type with corresponding msg size in bytes.
Unknown(u64),
}
/// Header of any protocol message, used to identify incoming messages.
#[derive(Clone)]
pub struct MsgHeader {
magic: [u8; 2],
/// Type of the message.
pub msg_type: Type,
/// Total length of the message in bytes.
pub msg_len: u64,
}
impl MsgHeader {
/// Creates a new message header.
pub fn new(msg_type: Type, len: u64) -> MsgHeader {
MsgHeader {
magic: magic(),
msg_type: msg_type,
msg_len: len,
}
}
}
impl FixedLength for MsgHeader {
// 2 magic bytes + 1 type byte + 8 bytes (msg_len)
const LEN: usize = 2 + 1 + 8;
}
impl Writeable for MsgHeader {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(
writer,
[write_u8, self.magic[0]],
[write_u8, self.magic[1]],
[write_u8, self.msg_type as u8],
[write_u64, self.msg_len]
);
Ok(())
}
}
impl Readable for MsgHeaderWrapper {
fn read(reader: &mut dyn Reader) -> Result<MsgHeaderWrapper, ser::Error> {
let m = magic();
reader.expect_u8(m[0])?;
reader.expect_u8(m[1])?;
// Read the msg header.
// We do not yet know if the msg type is one we support locally.
let (t, msg_len) = ser_multiread!(reader, read_u8, read_u64);
// Attempt to convert the msg type byte into one of our known msg type enum variants.
// Check the msg_len while we are at it.
match Type::from_u8(t) {
Some(msg_type) => {
// TODO 4x the limits for now to leave ourselves space to change things.
let max_len = max_msg_size(msg_type) * 4;
if msg_len > max_len {
error!(
"Too large read {:?}, max_len: {}, msg_len: {}.",
msg_type, max_len, msg_len
);
return Err(ser::Error::TooLargeReadErr);
}
Ok(MsgHeaderWrapper::Known(MsgHeader {
magic: m,
msg_type,
msg_len,
}))
}
None => {
// Unknown msg type, but we still want to limit how big the msg is.
let max_len = default_max_msg_size() * 4;
if msg_len > max_len {
error!(
"Too large read (unknown msg type) {:?}, max_len: {}, msg_len: {}.",
t, max_len, msg_len
);
return Err(ser::Error::TooLargeReadErr);
}
Ok(MsgHeaderWrapper::Unknown(msg_len))
}
}
}
}
/// First part of a handshake, sender advertises its version and
/// characteristics.
pub struct Hand {
/// protocol version of the sender
pub version: ProtocolVersion,
/// capabilities of the sender
pub capabilities: Capabilities,
/// randomly generated for each handshake, helps detect self
pub nonce: u64,
/// genesis block of our chain, only connect to peers on the same chain
pub genesis: Hash,
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// network address of the sender
pub sender_addr: PeerAddr,
/// network address of the receiver
pub receiver_addr: PeerAddr,
/// name of version of the software
pub user_agent: String,
}
impl Writeable for Hand {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.version.write(writer)?;
ser_multiwrite!(
writer,
[write_u32, self.capabilities.bits()],
[write_u64, self.nonce]
);
self.total_difficulty.write(writer)?;
self.sender_addr.write(writer)?;
self.receiver_addr.write(writer)?;
writer.write_bytes(&self.user_agent)?;
self.genesis.write(writer)?;
Ok(())
}
}
impl Readable for Hand {
fn read(reader: &mut dyn Reader) -> Result<Hand, ser::Error> {
let version = ProtocolVersion::read(reader)?;
let (capab, nonce) = ser_multiread!(reader, read_u32, read_u64);
let capabilities = Capabilities::from_bits_truncate(capab);
let total_difficulty = Difficulty::read(reader)?;
let sender_addr = PeerAddr::read(reader)?;
let receiver_addr = PeerAddr::read(reader)?;
let ua = reader.read_bytes_len_prefix()?;
let user_agent = String::from_utf8(ua).map_err(|_| ser::Error::CorruptedData)?;
let genesis = Hash::read(reader)?;
Ok(Hand {
version,
capabilities,
nonce,
genesis,
total_difficulty,
sender_addr,
receiver_addr,
user_agent,
})
}
}
/// Second part of a handshake, receiver of the first part replies with its own
/// version and characteristics.
pub struct Shake {
/// sender version
pub version: ProtocolVersion,
/// sender capabilities
pub capabilities: Capabilities,
/// genesis block of our chain, only connect to peers on the same chain
pub genesis: Hash,
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// name of version of the software
pub user_agent: String,
}
impl Writeable for Shake {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.version.write(writer)?;
writer.write_u32(self.capabilities.bits())?;
self.total_difficulty.write(writer)?;
writer.write_bytes(&self.user_agent)?;
self.genesis.write(writer)?;
Ok(())
}
}
impl Readable for Shake {
fn read(reader: &mut dyn Reader) -> Result<Shake, ser::Error> {
let version = ProtocolVersion::read(reader)?;
let capab = reader.read_u32()?;
let capabilities = Capabilities::from_bits_truncate(capab);
let total_difficulty = Difficulty::read(reader)?;
let ua = reader.read_bytes_len_prefix()?;
let user_agent = String::from_utf8(ua).map_err(|_| ser::Error::CorruptedData)?;
let genesis = Hash::read(reader)?;
Ok(Shake {
version,
capabilities,
genesis,
total_difficulty,
user_agent,
})
}
}
/// Ask for other peers addresses, required for network discovery.
pub struct GetPeerAddrs {
/// Filters on the capabilities we'd like the peers to have
pub capabilities: Capabilities,
}
impl Writeable for GetPeerAddrs {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u32(self.capabilities.bits())
}
}
impl Readable for GetPeerAddrs {
fn read(reader: &mut dyn Reader) -> Result<GetPeerAddrs, ser::Error> {
let capab = reader.read_u32()?;
let capabilities = Capabilities::from_bits_truncate(capab);
Ok(GetPeerAddrs { capabilities })
}
}
/// Peer addresses we know of that are fresh enough, in response to
/// GetPeerAddrs.
#[derive(Debug)]
pub struct PeerAddrs {
pub peers: Vec<PeerAddr>,
}
impl Writeable for PeerAddrs {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u32(self.peers.len() as u32)?;
for p in &self.peers {
p.write(writer)?;
}
Ok(())
}
}
impl Readable for PeerAddrs {
fn read(reader: &mut dyn Reader) -> Result<PeerAddrs, ser::Error> {
let peer_count = reader.read_u32()?;
if peer_count > MAX_PEER_ADDRS {
return Err(ser::Error::TooLargeReadErr);
} else if peer_count == 0 {
return Ok(PeerAddrs { peers: vec![] });
}
let mut peers = Vec::with_capacity(peer_count as usize);
for _ in 0..peer_count {
peers.push(PeerAddr::read(reader)?);
}
Ok(PeerAddrs { peers: peers })
}
}
/// We found some issue in the communication, sending an error back, usually
/// followed by closing the connection.
pub struct PeerError {
/// error code
pub code: u32,
/// slightly more user friendly message
pub message: String,
}
impl Writeable for PeerError {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(writer, [write_u32, self.code], [write_bytes, &self.message]);
Ok(())
}
}
impl Readable for PeerError {
fn read(reader: &mut dyn Reader) -> Result<PeerError, ser::Error> {
let code = reader.read_u32()?;
let msg = reader.read_bytes_len_prefix()?;
let message = String::from_utf8(msg).map_err(|_| ser::Error::CorruptedData)?;
Ok(PeerError {
code: code,
message: message,
})
}
}
/// Serializable wrapper for the block locator.
#[derive(Debug)]
pub struct Locator {
pub hashes: Vec<Hash>,
}
impl Writeable for Locator {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u8(self.hashes.len() as u8)?;
for h in &self.hashes {
h.write(writer)?
}
Ok(())
}
}
impl Readable for Locator {
fn read(reader: &mut dyn Reader) -> Result<Locator, ser::Error> {
let len = reader.read_u8()?;
if len > (MAX_LOCATORS as u8) {
return Err(ser::Error::TooLargeReadErr);
}
let mut hashes = Vec::with_capacity(len as usize);
for _ in 0..len {
hashes.push(Hash::read(reader)?);
}
Ok(Locator { hashes: hashes })
}
}
/// Serializable wrapper for a list of block headers.
pub struct Headers {
pub headers: Vec<BlockHeader>,
}
impl Writeable for Headers {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u16(self.headers.len() as u16)?;
for h in &self.headers {
h.write(writer)?
}
Ok(())
}
}
pub struct Ping {
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// total height
pub height: u64,
}
impl Writeable for Ping {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.total_difficulty.write(writer)?;
self.height.write(writer)?;
Ok(())
}
}
impl Readable for Ping {
fn read(reader: &mut dyn Reader) -> Result<Ping, ser::Error> {
let total_difficulty = Difficulty::read(reader)?;
let height = reader.read_u64()?;
Ok(Ping {
total_difficulty,
height,
})
}
}
pub struct Pong {
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// height accumulated by sender
pub height: u64,
}
impl Writeable for Pong {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.total_difficulty.write(writer)?;
self.height.write(writer)?;
Ok(())
}
}
impl Readable for Pong {
fn read(reader: &mut dyn Reader) -> Result<Pong, ser::Error> {
let total_difficulty = Difficulty::read(reader)?;
let height = reader.read_u64()?;
Ok(Pong {
total_difficulty,
height,
})
}
}
#[derive(Debug)]
pub struct BanReason {
/// the reason for the ban
pub ban_reason: ReasonForBan,
}
impl Writeable for BanReason {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
let ban_reason_i32 = self.ban_reason as i32;
ban_reason_i32.write(writer)?;
Ok(())
}
}
impl Readable for BanReason {
fn read(reader: &mut dyn Reader) -> Result<BanReason, ser::Error> {
let ban_reason_i32 = match reader.read_i32() {
Ok(h) => h,
Err(_) => 0,
};
let ban_reason = ReasonForBan::from_i32(ban_reason_i32).ok_or(ser::Error::CorruptedData)?;
Ok(BanReason { ban_reason })
}
}
/// Request to get an archive of the full txhashset store, required to sync
/// a new node.
pub struct TxHashSetRequest {
/// Hash of the block for which the txhashset should be provided
pub hash: Hash,
/// Height of the corresponding block
pub height: u64,
}
impl Writeable for TxHashSetRequest {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.hash.write(writer)?;
writer.write_u64(self.height)?;
Ok(())
}
}
impl Readable for TxHashSetRequest {
fn read(reader: &mut dyn Reader) -> Result<TxHashSetRequest, ser::Error> {
Ok(TxHashSetRequest {
hash: Hash::read(reader)?,
height: reader.read_u64()?,
})
}
}
/// Response to a txhashset archive request, must include a zip stream of the
/// archive after the message body.
pub struct TxHashSetArchive {
/// Hash of the block for which the txhashset are provided
pub hash: Hash,
/// Height of the corresponding block
pub height: u64,
/// Size in bytes of the archive
pub bytes: u64,
}
impl Writeable for TxHashSetArchive {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
self.hash.write(writer)?;
ser_multiwrite!(writer, [write_u64, self.height], [write_u64, self.bytes]);
Ok(())
}
}
impl Readable for TxHashSetArchive {
fn read(reader: &mut dyn Reader) -> Result<TxHashSetArchive, ser::Error> {
let hash = Hash::read(reader)?;
let (height, bytes) = ser_multiread!(reader, read_u64, read_u64);
Ok(TxHashSetArchive {
hash,
height,
bytes,
})
}
}
pub struct KernelDataRequest {}
impl Writeable for KernelDataRequest {
fn write<W: Writer>(&self, _writer: &mut W) -> Result<(), ser::Error> {
Ok(())
}
}
pub struct KernelDataResponse {
/// Size in bytes of the attached kernel data file.
pub bytes: u64,
}
impl Writeable for KernelDataResponse {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u64(self.bytes)?;
Ok(())
}
}
impl Readable for KernelDataResponse {
fn read(reader: &mut dyn Reader) -> Result<KernelDataResponse, ser::Error> {
let bytes = reader.read_u64()?;
Ok(KernelDataResponse { bytes })
}
}