grin/p2p/src/peers.rs
Antioch Peverell a2adf2dfe8
Dandelion++ Rewrite (#2628)
* reworked the dandelion rewrite (dandelion++)

* fallback to fluff/broadcast if we cannot stem the tx for any reason

* rework stem vs fluff logic during accepting tx

* cleanup docs

* add is_stem to logging

* cleanup

* rustfmt

* cleanup monitor and logging

* rework dandelion monitor to use simple cutoff for aggregation

* transition to next epoch *after* processing tx
so we fluff final outstanding txs

* fluff all txs in stempool if any are older than 30s
aggressively aggregate when we can

* fix rebase onto 1.1.0

* default config comments for Dandelion

* fix code to reflect our tests - fallback to txpool on stempool error

* log fluff and expire errors in dandelion monitor

* cleanup

* fix off by one

* cleanup

* cleanup

* various fixes

* one less clone

* cleanup
2019-03-20 13:08:56 +00:00

622 lines
18 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::util::RwLock;
use std::collections::HashMap;
use std::fs::File;
use std::sync::Arc;
use rand::{thread_rng, Rng};
use crate::core::core;
use crate::core::core::hash::{Hash, Hashed};
use crate::core::global;
use crate::core::pow::Difficulty;
use chrono::prelude::*;
use chrono::Duration;
use crate::peer::Peer;
use crate::store::{PeerData, PeerStore, State};
use crate::types::{
Capabilities, ChainAdapter, Direction, Error, NetAdapter, P2PConfig, PeerAddr, ReasonForBan,
TxHashSetRead, MAX_PEER_ADDRS,
};
pub struct Peers {
pub adapter: Arc<dyn ChainAdapter>,
store: PeerStore,
peers: RwLock<HashMap<PeerAddr, Arc<Peer>>>,
config: P2PConfig,
}
impl Peers {
pub fn new(store: PeerStore, adapter: Arc<dyn ChainAdapter>, config: P2PConfig) -> Peers {
Peers {
adapter,
store,
config,
peers: RwLock::new(HashMap::new()),
}
}
/// Adds the peer to our internal peer mapping. Note that the peer is still
/// returned so the server can run it.
pub fn add_connected(&self, peer: Arc<Peer>) -> Result<(), Error> {
let peer_data = PeerData {
addr: peer.info.addr,
capabilities: peer.info.capabilities,
user_agent: peer.info.user_agent.clone(),
flags: State::Healthy,
last_banned: 0,
ban_reason: ReasonForBan::None,
last_connected: Utc::now().timestamp(),
};
debug!("Saving newly connected peer {}.", peer_data.addr);
self.save_peer(&peer_data)?;
self.peers.write().insert(peer_data.addr, peer.clone());
Ok(())
}
/// Add a peer as banned to block future connections, usually due to failed
/// handshake
pub fn add_banned(&self, addr: PeerAddr, ban_reason: ReasonForBan) -> Result<(), Error> {
let peer_data = PeerData {
addr,
capabilities: Capabilities::UNKNOWN,
user_agent: "".to_string(),
flags: State::Banned,
last_banned: Utc::now().timestamp(),
ban_reason,
last_connected: Utc::now().timestamp(),
};
debug!("Banning peer {}.", addr);
self.save_peer(&peer_data)
}
pub fn is_known(&self, addr: PeerAddr) -> bool {
self.peers.read().contains_key(&addr)
}
/// Get vec of peers we are currently connected to.
pub fn connected_peers(&self) -> Vec<Arc<Peer>> {
let mut res = self
.peers
.read()
.values()
.filter(|p| p.is_connected())
.cloned()
.collect::<Vec<_>>();
thread_rng().shuffle(&mut res);
res
}
pub fn outgoing_connected_peers(&self) -> Vec<Arc<Peer>> {
let peers = self.connected_peers();
let res = peers
.into_iter()
.filter(|x| x.info.direction == Direction::Outbound)
.collect::<Vec<_>>();
res
}
/// Get a peer we're connected to by address.
pub fn get_connected_peer(&self, addr: PeerAddr) -> Option<Arc<Peer>> {
self.peers.read().get(&addr).map(|p| p.clone())
}
/// Number of peers currently connected to.
pub fn peer_count(&self) -> u32 {
self.peers
.read()
.values()
.filter(|x| x.is_connected())
.count() as u32
}
/// Number of outbound peers currently connected to.
pub fn peer_outbound_count(&self) -> u32 {
self.peers
.read()
.values()
.filter(|x| x.is_connected() && x.info.is_outbound())
.count() as u32
}
// Return vec of connected peers that currently advertise more work
// (total_difficulty) than we do.
pub fn more_work_peers(&self) -> Vec<Arc<Peer>> {
let peers = self.connected_peers();
if peers.len() == 0 {
return vec![];
}
let total_difficulty = self.total_difficulty();
let mut max_peers = peers
.into_iter()
.filter(|x| x.info.total_difficulty() > total_difficulty)
.collect::<Vec<_>>();
thread_rng().shuffle(&mut max_peers);
max_peers
}
// Return number of connected peers that currently advertise more/same work
// (total_difficulty) than/as we do.
pub fn more_or_same_work_peers(&self) -> usize {
let peers = self.connected_peers();
if peers.len() == 0 {
return 0;
}
let total_difficulty = self.total_difficulty();
peers
.iter()
.filter(|x| x.info.total_difficulty() >= total_difficulty)
.count()
}
/// Returns single random peer with more work than us.
pub fn more_work_peer(&self) -> Option<Arc<Peer>> {
self.more_work_peers().pop()
}
/// Return vec of connected peers that currently have the most worked
/// branch, showing the highest total difficulty.
pub fn most_work_peers(&self) -> Vec<Arc<Peer>> {
let peers = self.connected_peers();
if peers.len() == 0 {
return vec![];
}
let max_total_difficulty = peers
.iter()
.map(|x| x.info.total_difficulty())
.max()
.unwrap();
let mut max_peers = peers
.into_iter()
.filter(|x| x.info.total_difficulty() == max_total_difficulty)
.collect::<Vec<_>>();
thread_rng().shuffle(&mut max_peers);
max_peers
}
/// Returns single random peer with the most worked branch, showing the
/// highest total difficulty.
pub fn most_work_peer(&self) -> Option<Arc<Peer>> {
self.most_work_peers().pop()
}
pub fn is_banned(&self, peer_addr: PeerAddr) -> bool {
if let Ok(peer) = self.store.get_peer(peer_addr) {
if peer.flags == State::Banned {
return true;
}
}
false
}
/// Ban a peer, disconnecting it if we're currently connected
pub fn ban_peer(&self, peer_addr: PeerAddr, ban_reason: ReasonForBan) {
if let Err(e) = self.update_state(peer_addr, State::Banned) {
error!("Couldn't ban {}: {:?}", peer_addr, e);
}
if let Some(peer) = self.get_connected_peer(peer_addr) {
debug!("Banning peer {}", peer_addr);
// setting peer status will get it removed at the next clean_peer
peer.send_ban_reason(ban_reason);
peer.set_banned();
peer.stop();
}
}
/// Unban a peer, checks if it exists and banned then unban
pub fn unban_peer(&self, peer_addr: PeerAddr) {
debug!("unban_peer: peer {}", peer_addr);
match self.get_peer(peer_addr) {
Ok(_) => {
if self.is_banned(peer_addr) {
if let Err(e) = self.update_state(peer_addr, State::Healthy) {
error!("Couldn't unban {}: {:?}", peer_addr, e);
}
} else {
error!("Couldn't unban {}: peer is not banned", peer_addr);
}
}
Err(e) => error!("Couldn't unban {}: {:?}", peer_addr, e),
};
}
fn broadcast<F>(&self, obj_name: &str, num_peers: u32, inner: F) -> u32
where
F: Fn(&Peer) -> Result<bool, Error>,
{
let mut count = 0;
// Iterate over our connected peers.
// Try our best to send to at most num_peers peers.
for p in self.connected_peers().iter() {
match inner(&p) {
Ok(true) => count += 1,
Ok(false) => (),
Err(e) => debug!("Error sending {} to peer: {:?}", obj_name, e),
}
if count >= num_peers {
break;
}
}
count
}
/// Broadcasts the provided compact block to PEER_MAX_COUNT of our peers.
/// This is only used when initially broadcasting a newly mined block
/// from a mining node so we want to broadcast it far and wide.
/// A peer implementation may drop the broadcast request
/// if it knows the remote peer already has the block.
pub fn broadcast_compact_block(&self, b: &core::CompactBlock) {
let num_peers = self.config.peer_max_count();
let count = self.broadcast("compact block", num_peers, |p| p.send_compact_block(b));
debug!(
"broadcast_compact_block: {}, {} at {}, to {} peers, done.",
b.hash(),
b.header.pow.total_difficulty,
b.header.height,
count,
);
}
/// Broadcasts the provided header to PEER_PREFERRED_COUNT of our peers.
/// We may be connected to PEER_MAX_COUNT peers so we only
/// want to broadcast to a random subset of peers.
/// A peer implementation may drop the broadcast request
/// if it knows the remote peer already has the header.
pub fn broadcast_header(&self, bh: &core::BlockHeader) {
let num_peers = self.config.peer_min_preferred_count();
let count = self.broadcast("header", num_peers, |p| p.send_header(bh));
debug!(
"broadcast_header: {}, {} at {}, to {} peers, done.",
bh.hash(),
bh.pow.total_difficulty,
bh.height,
count,
);
}
/// Broadcasts the provided transaction to PEER_PREFERRED_COUNT of our
/// peers. We may be connected to PEER_MAX_COUNT peers so we only
/// want to broadcast to a random subset of peers.
/// A peer implementation may drop the broadcast request
/// if it knows the remote peer already has the transaction.
pub fn broadcast_transaction(&self, tx: &core::Transaction) {
let num_peers = self.config.peer_max_count();
let count = self.broadcast("transaction", num_peers, |p| p.send_transaction(tx));
debug!(
"broadcast_transaction: {} to {} peers, done.",
tx.hash(),
count,
);
}
/// Ping all our connected peers. Always automatically expects a pong back
/// or disconnects. This acts as a liveness test.
pub fn check_all(&self, total_difficulty: Difficulty, height: u64) {
let peers_map = self.peers.read();
for p in peers_map.values() {
if p.is_connected() {
let _ = p.send_ping(total_difficulty, height);
}
}
}
/// All peer information we have in storage
pub fn all_peers(&self) -> Vec<PeerData> {
self.store.all_peers()
}
/// Find peers in store (not necessarily connected) and return their data
pub fn find_peers(&self, state: State, cap: Capabilities, count: usize) -> Vec<PeerData> {
self.store.find_peers(state, cap, count)
}
/// Get peer in store by address
pub fn get_peer(&self, peer_addr: PeerAddr) -> Result<PeerData, Error> {
self.store.get_peer(peer_addr).map_err(From::from)
}
/// Whether we've already seen a peer with the provided address
pub fn exists_peer(&self, peer_addr: PeerAddr) -> Result<bool, Error> {
self.store.exists_peer(peer_addr).map_err(From::from)
}
/// Saves updated information about a peer
pub fn save_peer(&self, p: &PeerData) -> Result<(), Error> {
self.store.save_peer(p).map_err(From::from)
}
/// Updates the state of a peer in store
pub fn update_state(&self, peer_addr: PeerAddr, new_state: State) -> Result<(), Error> {
self.store
.update_state(peer_addr, new_state)
.map_err(From::from)
}
/// Iterate over the peer list and prune all peers we have
/// lost connection to or have been deemed problematic.
/// Also avoid connected peer count getting too high.
pub fn clean_peers(&self, max_count: usize) {
let mut rm = vec![];
// build a list of peers to be cleaned up
for peer in self.peers.read().values() {
if peer.is_banned() {
debug!("clean_peers {:?}, peer banned", peer.info.addr);
rm.push(peer.info.addr.clone());
} else if !peer.is_connected() {
debug!("clean_peers {:?}, not connected", peer.info.addr);
rm.push(peer.info.addr.clone());
} else if peer.is_abusive() {
let counts = peer.last_min_message_counts().unwrap();
debug!(
"clean_peers {:?}, abusive ({} sent, {} recv)",
peer.info.addr, counts.0, counts.1,
);
let _ = self.update_state(peer.info.addr, State::Banned);
rm.push(peer.info.addr.clone());
} else {
let (stuck, diff) = peer.is_stuck();
if stuck && diff < self.adapter.total_difficulty() {
debug!("clean_peers {:?}, stuck peer", peer.info.addr);
let _ = self.update_state(peer.info.addr, State::Defunct);
rm.push(peer.info.addr.clone());
}
}
}
// ensure we do not still have too many connected peers
let excess_count = (self.peer_count() as usize)
.saturating_sub(rm.len())
.saturating_sub(max_count);
if excess_count > 0 {
// map peers to addrs in a block to bound how long we keep the read lock for
let mut addrs = self
.connected_peers()
.iter()
.take(excess_count)
.map(|x| x.info.addr.clone())
.collect::<Vec<_>>();
rm.append(&mut addrs);
}
// now clean up peer map based on the list to remove
{
let mut peers = self.peers.write();
for addr in rm {
let _ = peers.get(&addr).map(|peer| peer.stop());
peers.remove(&addr);
}
}
}
pub fn stop(&self) {
let mut peers = self.peers.write();
for (_, peer) in peers.drain() {
peer.stop();
}
}
pub fn enough_peers(&self) -> bool {
self.peer_count() >= self.config.peer_min_preferred_count()
}
/// We have enough peers, both total connected and outbound connected
pub fn healthy_peers_mix(&self) -> bool {
self.enough_peers()
&& self.peer_outbound_count() >= self.config.peer_min_preferred_count() / 2
}
/// Removes those peers that seem to have expired
pub fn remove_expired(&self) {
let now = Utc::now();
// Delete defunct peers from storage
let _ = self.store.delete_peers(|peer| {
let diff = now - Utc.timestamp(peer.last_connected, 0);
let should_remove = peer.flags == State::Defunct
&& diff > Duration::seconds(global::PEER_EXPIRATION_REMOVE_TIME);
if should_remove {
debug!(
"removing peer {:?}: last connected {} days {} hours {} minutes ago.",
peer.addr,
diff.num_days(),
diff.num_hours(),
diff.num_minutes()
);
}
should_remove
});
}
}
impl ChainAdapter for Peers {
fn total_difficulty(&self) -> Difficulty {
self.adapter.total_difficulty()
}
fn total_height(&self) -> u64 {
self.adapter.total_height()
}
fn get_transaction(&self, kernel_hash: Hash) -> Option<core::Transaction> {
self.adapter.get_transaction(kernel_hash)
}
fn tx_kernel_received(&self, kernel_hash: Hash, addr: PeerAddr) {
self.adapter.tx_kernel_received(kernel_hash, addr)
}
fn transaction_received(&self, tx: core::Transaction, stem: bool) {
self.adapter.transaction_received(tx, stem)
}
fn block_received(&self, b: core::Block, peer_addr: PeerAddr, was_requested: bool) -> bool {
let hash = b.hash();
if !self.adapter.block_received(b, peer_addr, was_requested) {
// if the peer sent us a block that's intrinsically bad
// they are either mistaken or malevolent, both of which require a ban
debug!(
"Received a bad block {} from {}, the peer will be banned",
hash, peer_addr
);
self.ban_peer(peer_addr, ReasonForBan::BadBlock);
false
} else {
true
}
}
fn compact_block_received(&self, cb: core::CompactBlock, peer_addr: PeerAddr) -> bool {
let hash = cb.hash();
if !self.adapter.compact_block_received(cb, peer_addr) {
// if the peer sent us a block that's intrinsically bad
// they are either mistaken or malevolent, both of which require a ban
debug!(
"Received a bad compact block {} from {}, the peer will be banned",
hash, peer_addr
);
self.ban_peer(peer_addr, ReasonForBan::BadCompactBlock);
false
} else {
true
}
}
fn header_received(&self, bh: core::BlockHeader, peer_addr: PeerAddr) -> bool {
if !self.adapter.header_received(bh, peer_addr) {
// if the peer sent us a block header that's intrinsically bad
// they are either mistaken or malevolent, both of which require a ban
self.ban_peer(peer_addr, ReasonForBan::BadBlockHeader);
false
} else {
true
}
}
fn headers_received(&self, headers: &[core::BlockHeader], peer_addr: PeerAddr) -> bool {
if !self.adapter.headers_received(headers, peer_addr) {
// if the peer sent us a block header that's intrinsically bad
// they are either mistaken or malevolent, both of which require a ban
self.ban_peer(peer_addr, ReasonForBan::BadBlockHeader);
false
} else {
true
}
}
fn locate_headers(&self, hs: &[Hash]) -> Vec<core::BlockHeader> {
self.adapter.locate_headers(hs)
}
fn get_block(&self, h: Hash) -> Option<core::Block> {
self.adapter.get_block(h)
}
fn txhashset_read(&self, h: Hash) -> Option<TxHashSetRead> {
self.adapter.txhashset_read(h)
}
fn txhashset_receive_ready(&self) -> bool {
self.adapter.txhashset_receive_ready()
}
fn txhashset_write(&self, h: Hash, txhashset_data: File, peer_addr: PeerAddr) -> bool {
if !self.adapter.txhashset_write(h, txhashset_data, peer_addr) {
debug!(
"Received a bad txhashset data from {}, the peer will be banned",
&peer_addr
);
self.ban_peer(peer_addr, ReasonForBan::BadTxHashSet);
false
} else {
true
}
}
fn txhashset_download_update(
&self,
start_time: DateTime<Utc>,
downloaded_size: u64,
total_size: u64,
) -> bool {
self.adapter
.txhashset_download_update(start_time, downloaded_size, total_size)
}
}
impl NetAdapter for Peers {
/// Find good peers we know with the provided capability and return their
/// addresses.
fn find_peer_addrs(&self, capab: Capabilities) -> Vec<PeerAddr> {
let peers = self.find_peers(State::Healthy, capab, MAX_PEER_ADDRS as usize);
trace!("find_peer_addrs: {} healthy peers picked", peers.len());
map_vec!(peers, |p| p.addr)
}
/// A list of peers has been received from one of our peers.
fn peer_addrs_received(&self, peer_addrs: Vec<PeerAddr>) {
trace!("Received {} peer addrs, saving.", peer_addrs.len());
for pa in peer_addrs {
if let Ok(e) = self.exists_peer(pa) {
if e {
continue;
}
}
let peer = PeerData {
addr: pa,
capabilities: Capabilities::UNKNOWN,
user_agent: "".to_string(),
flags: State::Healthy,
last_banned: 0,
ban_reason: ReasonForBan::None,
last_connected: Utc::now().timestamp(),
};
if let Err(e) = self.save_peer(&peer) {
error!("Could not save received peer address: {:?}", e);
}
}
}
fn peer_difficulty(&self, addr: PeerAddr, diff: Difficulty, height: u64) {
if let Some(peer) = self.get_connected_peer(addr) {
peer.info.update(height, diff);
}
}
fn is_banned(&self, addr: PeerAddr) -> bool {
if let Ok(peer) = self.get_peer(addr) {
peer.flags == State::Banned
} else {
false
}
}
}