grin/pool/src/transaction_pool.rs

372 lines
11 KiB
Rust

// Copyright 2021 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Transaction pool implementation leveraging txhashset for chain state
//! validation. It is a valid operation to add a tx to the tx pool if the
//! resulting tx pool can be added to the current chain state to produce a
//! valid chain state.
use self::core::core::hash::{Hash, Hashed};
use self::core::core::id::ShortId;
use self::core::core::{
transaction, Block, BlockHeader, HeaderVersion, OutputIdentifier, Transaction, Weighting,
};
use self::core::global;
use self::util::RwLock;
use crate::pool::Pool;
use crate::types::{BlockChain, PoolAdapter, PoolConfig, PoolEntry, PoolError, TxSource};
use chrono::prelude::*;
use grin_core as core;
use grin_util as util;
use std::collections::VecDeque;
use std::sync::Arc;
/// Transaction pool implementation.
pub struct TransactionPool<B, P>
where
B: BlockChain,
P: PoolAdapter,
{
/// Pool Config
pub config: PoolConfig,
/// Our transaction pool.
pub txpool: Pool<B>,
/// Our Dandelion "stempool".
pub stempool: Pool<B>,
/// Cache of previous txs in case of a re-org.
pub reorg_cache: Arc<RwLock<VecDeque<PoolEntry>>>,
/// The blockchain
pub blockchain: Arc<B>,
/// The pool adapter
pub adapter: Arc<P>,
}
impl<B, P> TransactionPool<B, P>
where
B: BlockChain,
P: PoolAdapter,
{
/// Create a new transaction pool
pub fn new(config: PoolConfig, chain: Arc<B>, adapter: Arc<P>) -> Self {
TransactionPool {
config,
txpool: Pool::new(chain.clone(), "txpool".to_string()),
stempool: Pool::new(chain.clone(), "stempool".to_string()),
reorg_cache: Arc::new(RwLock::new(VecDeque::new())),
blockchain: chain,
adapter,
}
}
pub fn chain_head(&self) -> Result<BlockHeader, PoolError> {
self.blockchain.chain_head()
}
// Add tx to stempool (passing in all txs from txpool to validate against).
fn add_to_stempool(
&mut self,
entry: &PoolEntry,
header: &BlockHeader,
extra_tx: Option<Transaction>,
) -> Result<(), PoolError> {
self.stempool.add_to_pool(entry.clone(), extra_tx, header)
}
fn add_to_reorg_cache(&mut self, entry: &PoolEntry) {
let mut cache = self.reorg_cache.write();
cache.push_back(entry.clone());
// We cache 30 mins of txs but we have a hard limit to avoid catastrophic failure.
// For simplicity use the same value as the actual tx pool limit.
if cache.len() > self.config.max_pool_size {
let _ = cache.pop_front();
}
debug!("added tx to reorg_cache: size now {}", cache.len());
}
// Deaggregate this tx against the txpool.
// Returns the new deaggregated tx or the original tx if no deaggregation.
fn deaggregate_tx(&self, entry: PoolEntry) -> Result<PoolEntry, PoolError> {
if entry.tx.kernels().len() > 1 {
let txs = self.txpool.find_matching_transactions(entry.tx.kernels());
if !txs.is_empty() {
let tx = transaction::deaggregate(entry.tx, &txs)?;
return Ok(PoolEntry::new(tx, TxSource::Deaggregate));
}
}
Ok(entry)
}
fn add_to_txpool(&mut self, entry: &PoolEntry, header: &BlockHeader) -> Result<(), PoolError> {
self.txpool.add_to_pool(entry.clone(), None, header)?;
// We now need to reconcile the stempool based on the new state of the txpool.
// Some stempool txs may no longer be valid and we need to evict them.
let txpool_agg = self.txpool.all_transactions_aggregate(None)?;
self.stempool.reconcile(txpool_agg, header)?;
Ok(())
}
/// Verify the tx kernel variants and ensure they can all be accepted to the txpool/stempool
/// with respect to current header version.
fn verify_kernel_variants(
&self,
tx: &Transaction,
header: &BlockHeader,
) -> Result<(), PoolError> {
if tx.kernels().iter().any(|k| k.is_nrd()) {
if !global::is_nrd_enabled() {
return Err(PoolError::NRDKernelNotEnabled);
}
if header.version < HeaderVersion(4) {
return Err(PoolError::NRDKernelPreHF3);
}
}
Ok(())
}
/// Add the given tx to the pool, directing it to either the stempool or
/// txpool based on stem flag provided.
pub fn add_to_pool(
&mut self,
src: TxSource,
tx: Transaction,
stem: bool,
header: &BlockHeader,
) -> Result<(), PoolError> {
// Quick check for duplicate txs.
// Our stempool is private and we do not want to reveal anything about the txs contained.
// If this is a stem tx and is already present in stempool then fluff by adding to txpool.
// Otherwise if already present in txpool return a "duplicate tx" error.
if stem && self.stempool.contains_tx(&tx) {
return self.add_to_pool(src, tx, false, header);
} else if self.txpool.contains_tx(&tx) {
return Err(PoolError::DuplicateTx);
}
// Attempt to deaggregate the tx if not stem tx.
let entry = if stem {
PoolEntry::new(tx, src)
} else {
self.deaggregate_tx(PoolEntry::new(tx, src))?
};
let ref tx = entry.tx;
// Check this tx is valid based on current header version.
// NRD kernels only valid post HF3 and if NRD feature enabled.
self.verify_kernel_variants(tx, header)?;
// Does this transaction pay the required fees and fit within the pool capacity?
let acceptability = self.is_acceptable(tx, stem);
let mut evict = false;
if !stem && acceptability.as_ref().err() == Some(&PoolError::OverCapacity) {
evict = true;
} else if acceptability.is_err() {
return acceptability;
}
// Make sure the transaction is valid before anything else.
// Validate tx accounting for max tx weight.
tx.validate(Weighting::AsTransaction)
.map_err(PoolError::InvalidTx)?;
// Check the tx lock_time is valid based on current chain state.
self.blockchain.verify_tx_lock_height(tx)?;
// If stem we want to account for the txpool.
let extra_tx = if stem {
self.txpool.all_transactions_aggregate(None)?
} else {
None
};
// Locate outputs being spent from pool and current utxo.
let (spent_pool, spent_utxo) = if stem {
self.stempool.locate_spends(tx, extra_tx.clone())
} else {
self.txpool.locate_spends(tx, None)
}?;
// Check coinbase maturity before we go any further.
let coinbase_inputs: Vec<_> = spent_utxo
.iter()
.filter(|x| x.is_coinbase())
.cloned()
.collect();
self.blockchain
.verify_coinbase_maturity(&coinbase_inputs.as_slice().into())?;
// Convert the tx to "v2" compatibility with "features and commit" inputs.
let ref entry = self.convert_tx_v2(entry, &spent_pool, &spent_utxo)?;
// If this is a stem tx then attempt to add it to stempool.
// If the adapter fails to accept the new stem tx then fallback to fluff via txpool.
if stem {
self.add_to_stempool(entry, header, extra_tx)?;
if self.adapter.stem_tx_accepted(entry).is_ok() {
return Ok(());
}
}
// Add tx to txpool.
self.add_to_txpool(entry, header)?;
self.add_to_reorg_cache(entry);
self.adapter.tx_accepted(entry);
// Transaction passed all the checks but we have to make space for it
if evict {
self.evict_from_txpool();
}
Ok(())
}
/// Convert a transaction for v2 compatibility.
/// We may receive a transaction with "commit only" inputs.
/// We convert it to "features and commit" so we can safely relay it to v2 peers.
/// Conversion is done using outputs previously looked up in both the pool and the current utxo.
fn convert_tx_v2(
&self,
entry: PoolEntry,
spent_pool: &[OutputIdentifier],
spent_utxo: &[OutputIdentifier],
) -> Result<PoolEntry, PoolError> {
let tx = entry.tx;
debug!(
"convert_tx_v2: {} ({} -> v2)",
tx.hash(),
tx.inputs().version_str(),
);
let mut inputs = spent_utxo.to_vec();
inputs.extend_from_slice(spent_pool);
inputs.sort_unstable();
let tx = Transaction {
body: tx.body.replace_inputs(inputs.as_slice().into()),
..tx
};
// Validate the tx to ensure our converted inputs are correct.
tx.validate(Weighting::AsTransaction)?;
Ok(PoolEntry::new(tx, entry.src))
}
// Evict a transaction from the txpool.
// Uses bucket logic to identify the "last" transaction.
// No other tx depends on it and it has low fee_rate
pub fn evict_from_txpool(&mut self) {
self.txpool.evict_transaction()
}
// Old txs will "age out" after 30 mins.
pub fn truncate_reorg_cache(&mut self, cutoff: DateTime<Utc>) {
let mut cache = self.reorg_cache.write();
while cache.front().map(|x| x.tx_at < cutoff).unwrap_or(false) {
let _ = cache.pop_front();
}
debug!("truncate_reorg_cache: size: {}", cache.len());
}
pub fn reconcile_reorg_cache(&mut self, header: &BlockHeader) -> Result<(), PoolError> {
let entries = self.reorg_cache.read().iter().cloned().collect::<Vec<_>>();
debug!(
"reconcile_reorg_cache: size: {}, block: {:?} ...",
entries.len(),
header.hash(),
);
for entry in entries {
let _ = self.add_to_txpool(&entry, header);
}
debug!(
"reconcile_reorg_cache: block: {:?} ... done.",
header.hash()
);
Ok(())
}
/// Reconcile the transaction pool (both txpool and stempool) against the
/// provided block.
pub fn reconcile_block(&mut self, block: &Block) -> Result<(), PoolError> {
// First reconcile the txpool.
self.txpool.reconcile_block(block);
self.txpool.reconcile(None, &block.header)?;
// Now reconcile our stempool, accounting for the updated txpool txs.
self.stempool.reconcile_block(block);
{
let txpool_tx = self.txpool.all_transactions_aggregate(None)?;
self.stempool.reconcile(txpool_tx, &block.header)?;
}
Ok(())
}
/// Retrieve individual transaction for the given kernel hash.
pub fn retrieve_tx_by_kernel_hash(&self, hash: Hash) -> Option<Transaction> {
self.txpool.retrieve_tx_by_kernel_hash(hash)
}
/// Retrieve all transactions matching the provided "compact block"
/// based on the kernel set.
/// Note: we only look in the txpool for this (stempool is under embargo).
pub fn retrieve_transactions(
&self,
hash: Hash,
nonce: u64,
kern_ids: &[ShortId],
) -> (Vec<Transaction>, Vec<ShortId>) {
self.txpool.retrieve_transactions(hash, nonce, kern_ids)
}
/// Whether the transaction is acceptable to the pool, given both how
/// full the pool is and the transaction weight.
fn is_acceptable(&self, tx: &Transaction, stem: bool) -> Result<(), PoolError> {
if self.total_size() > self.config.max_pool_size {
return Err(PoolError::OverCapacity);
}
// Check that the stempool can accept this transaction
if stem && self.stempool.size() > self.config.max_stempool_size
|| self.total_size() > self.config.max_pool_size
{
return Err(PoolError::OverCapacity);
}
// weight for a basic transaction (2 inputs, 2 outputs, 1 kernel) -
// (2 * 1) + (2 * 21) + (1 * 3) = 47
// minfees = 47 * 500_000 = 23_500_000
if tx.shifted_fee() < tx.accept_fee() {
return Err(PoolError::LowFeeTransaction(tx.shifted_fee()));
}
Ok(())
}
/// Get the total size of the pool.
/// Note: we only consider the txpool here as stempool is under embargo.
pub fn total_size(&self) -> usize {
self.txpool.size()
}
/// Returns a vector of transactions from the txpool so we can build a
/// block from them.
pub fn prepare_mineable_transactions(&self) -> Result<Vec<Transaction>, PoolError> {
self.txpool
.prepare_mineable_transactions(self.config.mineable_max_weight)
}
}