mirror of
https://github.com/mimblewimble/grin.git
synced 2025-01-21 11:31:08 +03:00
2d4538c428
* clean shutdown wip * rustfmt * introduce StopState that we can lock on * rustfmt * take lock on stop_state during critical processing (process_block_single etc.) * rustfmt * take lock on stop_state during chain::init() * cleanup * cleanup * rustfmt * docs/comments * fixup servers tests * cleanup p2p tests
489 lines
14 KiB
Rust
489 lines
14 KiB
Rust
// Copyright 2018 The Grin Developers
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
//! Implementation of the persistent Backend for the prunable MMR tree.
|
|
|
|
use std::{fs, io, time};
|
|
|
|
use crate::core::core::hash::{Hash, Hashed};
|
|
use crate::core::core::pmmr::{self, family, Backend};
|
|
use crate::core::core::BlockHeader;
|
|
use crate::core::ser::PMMRable;
|
|
use crate::leaf_set::LeafSet;
|
|
use crate::prune_list::PruneList;
|
|
use crate::types::{prune_noop, DataFile};
|
|
use croaring::Bitmap;
|
|
|
|
const PMMR_HASH_FILE: &str = "pmmr_hash.bin";
|
|
const PMMR_DATA_FILE: &str = "pmmr_data.bin";
|
|
const PMMR_LEAF_FILE: &str = "pmmr_leaf.bin";
|
|
const PMMR_PRUN_FILE: &str = "pmmr_prun.bin";
|
|
const REWIND_FILE_CLEANUP_DURATION_SECONDS: u64 = 60 * 60 * 24; // 24 hours as seconds
|
|
|
|
/// The list of PMMR_Files for internal purposes
|
|
pub const PMMR_FILES: [&str; 4] = [
|
|
PMMR_HASH_FILE,
|
|
PMMR_DATA_FILE,
|
|
PMMR_LEAF_FILE,
|
|
PMMR_PRUN_FILE,
|
|
];
|
|
|
|
/// PMMR persistent backend implementation. Relies on multiple facilities to
|
|
/// handle writing, reading and pruning.
|
|
///
|
|
/// * A main storage file appends Hash instances as they come.
|
|
/// This AppendOnlyFile is also backed by a mmap for reads.
|
|
/// * An in-memory backend buffers the latest batch of writes to ensure the
|
|
/// PMMR can always read recent values even if they haven't been flushed to
|
|
/// disk yet.
|
|
/// * A leaf_set tracks unpruned (unremoved) leaf positions in the MMR..
|
|
/// * A prune_list tracks the positions of pruned (and compacted) roots in the
|
|
/// MMR.
|
|
pub struct PMMRBackend<T: PMMRable> {
|
|
data_dir: String,
|
|
prunable: bool,
|
|
hash_file: DataFile<Hash>,
|
|
data_file: DataFile<T::E>,
|
|
leaf_set: LeafSet,
|
|
prune_list: PruneList,
|
|
}
|
|
|
|
impl<T: PMMRable> Backend<T> for PMMRBackend<T> {
|
|
/// Append the provided data and hashes to the backend storage.
|
|
/// Add the new leaf pos to our leaf_set if this is a prunable MMR.
|
|
#[allow(unused_variables)]
|
|
fn append(&mut self, data: &T, hashes: Vec<Hash>) -> Result<(), String> {
|
|
if self.prunable {
|
|
let shift = self.prune_list.get_total_shift();
|
|
let position = self.hash_file.size_unsync() + shift + 1;
|
|
self.leaf_set.add(position);
|
|
}
|
|
|
|
self.data_file
|
|
.append(&data.as_elmt())
|
|
.map_err(|e| format!("Failed to append data to file. {}", e))?;
|
|
|
|
for h in &hashes {
|
|
self.hash_file
|
|
.append(h)
|
|
.map_err(|e| format!("Failed to append hash to file. {}", e))?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn get_from_file(&self, position: u64) -> Option<Hash> {
|
|
if self.is_compacted(position) {
|
|
return None;
|
|
}
|
|
let shift = self.prune_list.get_shift(position);
|
|
self.hash_file.read(position - shift)
|
|
}
|
|
|
|
fn get_data_from_file(&self, position: u64) -> Option<T::E> {
|
|
if self.is_compacted(position) {
|
|
return None;
|
|
}
|
|
let flatfile_pos = pmmr::n_leaves(position);
|
|
let shift = self.prune_list.get_leaf_shift(position);
|
|
self.data_file.read(flatfile_pos - shift)
|
|
}
|
|
|
|
/// Get the hash at pos.
|
|
/// Return None if pos is a leaf and it has been removed (or pruned or
|
|
/// compacted).
|
|
fn get_hash(&self, pos: u64) -> Option<(Hash)> {
|
|
if self.prunable && pmmr::is_leaf(pos) && !self.leaf_set.includes(pos) {
|
|
return None;
|
|
}
|
|
self.get_from_file(pos)
|
|
}
|
|
|
|
/// Get the data at pos.
|
|
/// Return None if it has been removed or if pos is not a leaf node.
|
|
fn get_data(&self, pos: u64) -> Option<(T::E)> {
|
|
if !pmmr::is_leaf(pos) {
|
|
return None;
|
|
}
|
|
if self.prunable && !self.leaf_set.includes(pos) {
|
|
return None;
|
|
}
|
|
self.get_data_from_file(pos)
|
|
}
|
|
|
|
/// Rewind the PMMR backend to the given position.
|
|
fn rewind(&mut self, position: u64, rewind_rm_pos: &Bitmap) -> Result<(), String> {
|
|
// First rewind the leaf_set with the necessary added and removed positions.
|
|
if self.prunable {
|
|
self.leaf_set.rewind(position, rewind_rm_pos);
|
|
}
|
|
|
|
// Rewind the hash file accounting for pruned/compacted pos
|
|
let shift = self.prune_list.get_shift(position);
|
|
self.hash_file.rewind(position - shift);
|
|
|
|
// Rewind the data file accounting for pruned/compacted pos
|
|
let flatfile_pos = pmmr::n_leaves(position);
|
|
let leaf_shift = self.prune_list.get_leaf_shift(position);
|
|
self.data_file.rewind(flatfile_pos - leaf_shift);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Remove by insertion position.
|
|
fn remove(&mut self, pos: u64) -> Result<(), String> {
|
|
assert!(self.prunable, "Remove on non-prunable MMR");
|
|
self.leaf_set.remove(pos);
|
|
Ok(())
|
|
}
|
|
|
|
/// Return data file path
|
|
fn get_data_file_path(&self) -> &str {
|
|
self.data_file.path()
|
|
}
|
|
|
|
fn snapshot(&self, header: &BlockHeader) -> Result<(), String> {
|
|
self.leaf_set
|
|
.snapshot(header)
|
|
.map_err(|_| format!("Failed to save copy of leaf_set for {}", header.hash()))?;
|
|
Ok(())
|
|
}
|
|
|
|
fn dump_stats(&self) {
|
|
debug!(
|
|
"pmmr backend: unpruned: {}, hashes: {}, data: {}, leaf_set: {}, prune_list: {}",
|
|
self.unpruned_size(),
|
|
self.hash_size(),
|
|
self.data_size(),
|
|
self.leaf_set.len(),
|
|
self.prune_list.len(),
|
|
);
|
|
}
|
|
}
|
|
|
|
impl<T: PMMRable> PMMRBackend<T> {
|
|
/// Instantiates a new PMMR backend.
|
|
/// Use the provided dir to store its files.
|
|
pub fn new(
|
|
data_dir: String,
|
|
prunable: bool,
|
|
header: Option<&BlockHeader>,
|
|
) -> io::Result<PMMRBackend<T>> {
|
|
let hash_file = DataFile::open(&format!("{}/{}", data_dir, PMMR_HASH_FILE))?;
|
|
let data_file = DataFile::open(&format!("{}/{}", data_dir, PMMR_DATA_FILE))?;
|
|
|
|
let leaf_set_path = format!("{}/{}", data_dir, PMMR_LEAF_FILE);
|
|
|
|
// If we received a rewound "snapshot" leaf_set file move it into
|
|
// place so we use it.
|
|
if let Some(header) = header {
|
|
let leaf_snapshot_path = format!("{}/{}.{}", data_dir, PMMR_LEAF_FILE, header.hash());
|
|
LeafSet::copy_snapshot(&leaf_set_path, &leaf_snapshot_path)?;
|
|
}
|
|
|
|
let leaf_set = LeafSet::open(&leaf_set_path)?;
|
|
let prune_list = PruneList::open(&format!("{}/{}", data_dir, PMMR_PRUN_FILE))?;
|
|
|
|
Ok(PMMRBackend {
|
|
data_dir,
|
|
prunable,
|
|
hash_file,
|
|
data_file,
|
|
leaf_set,
|
|
prune_list,
|
|
})
|
|
}
|
|
|
|
fn is_pruned(&self, pos: u64) -> bool {
|
|
self.prune_list.is_pruned(pos)
|
|
}
|
|
|
|
fn is_pruned_root(&self, pos: u64) -> bool {
|
|
self.prune_list.is_pruned_root(pos)
|
|
}
|
|
|
|
fn is_compacted(&self, pos: u64) -> bool {
|
|
self.is_pruned(pos) && !self.is_pruned_root(pos)
|
|
}
|
|
|
|
/// Number of elements in the PMMR stored by this backend. Only produces the
|
|
/// fully sync'd size.
|
|
pub fn unpruned_size(&self) -> u64 {
|
|
let total_shift = self.prune_list.get_total_shift();
|
|
let sz = self.hash_file.size();
|
|
sz + total_shift
|
|
}
|
|
|
|
/// Number of elements in the underlying stored data. Extremely dependent on
|
|
/// pruning and compaction.
|
|
pub fn data_size(&self) -> u64 {
|
|
self.data_file.size()
|
|
}
|
|
|
|
/// Size of the underlying hashed data. Extremely dependent on pruning
|
|
/// and compaction.
|
|
pub fn hash_size(&self) -> u64 {
|
|
self.hash_file.size()
|
|
}
|
|
|
|
/// Syncs all files to disk. A call to sync is required to ensure all the
|
|
/// data has been successfully written to disk.
|
|
pub fn sync(&mut self) -> io::Result<()> {
|
|
self.hash_file
|
|
.flush()
|
|
.and(self.data_file.flush())
|
|
.and(self.leaf_set.flush())
|
|
.map_err(|e| {
|
|
io::Error::new(
|
|
io::ErrorKind::Interrupted,
|
|
format!("Could not write to state storage, disk full? {:?}", e),
|
|
)
|
|
})
|
|
}
|
|
|
|
/// Discard the current, non synced state of the backend.
|
|
pub fn discard(&mut self) {
|
|
self.hash_file.discard();
|
|
self.leaf_set.discard();
|
|
self.data_file.discard();
|
|
}
|
|
|
|
/// Takes the leaf_set at a given cutoff_pos and generates an updated
|
|
/// prune_list. Saves the updated prune_list to disk, compacts the hash
|
|
/// and data files based on the prune_list and saves both to disk.
|
|
///
|
|
/// A cutoff position limits compaction on recent data.
|
|
/// This will be the last position of a particular block to keep things
|
|
/// aligned. The block_marker in the db/index for the particular block
|
|
/// will have a suitable output_pos. This is used to enforce a horizon
|
|
/// after which the local node should have all the data to allow rewinding.
|
|
pub fn check_compact<P>(
|
|
&mut self,
|
|
cutoff_pos: u64,
|
|
rewind_rm_pos: &Bitmap,
|
|
prune_cb: P,
|
|
) -> io::Result<bool>
|
|
where
|
|
P: Fn(&[u8]),
|
|
{
|
|
assert!(self.prunable, "Trying to compact a non-prunable PMMR");
|
|
|
|
// Paths for tmp hash and data files.
|
|
let tmp_prune_file_hash = format!("{}/{}.hashprune", self.data_dir, PMMR_HASH_FILE);
|
|
let tmp_prune_file_data = format!("{}/{}.dataprune", self.data_dir, PMMR_DATA_FILE);
|
|
|
|
// Calculate the sets of leaf positions and node positions to remove based
|
|
// on the cutoff_pos provided.
|
|
let (leaves_removed, pos_to_rm) = self.pos_to_rm(cutoff_pos, rewind_rm_pos);
|
|
|
|
// 1. Save compact copy of the hash file, skipping removed data.
|
|
{
|
|
let off_to_rm = map_vec!(pos_to_rm, |pos| {
|
|
let shift = self.prune_list.get_shift(pos.into());
|
|
pos as u64 - 1 - shift
|
|
});
|
|
|
|
self.hash_file
|
|
.save_prune(tmp_prune_file_hash.clone(), &off_to_rm, &prune_noop)?;
|
|
}
|
|
|
|
// 2. Save compact copy of the data file, skipping removed leaves.
|
|
{
|
|
let leaf_pos_to_rm = pos_to_rm
|
|
.iter()
|
|
.filter(|&x| pmmr::is_leaf(x.into()))
|
|
.map(|x| x as u64)
|
|
.collect::<Vec<_>>();
|
|
|
|
let off_to_rm = map_vec!(leaf_pos_to_rm, |&pos| {
|
|
let flat_pos = pmmr::n_leaves(pos);
|
|
let shift = self.prune_list.get_leaf_shift(pos);
|
|
(flat_pos - 1 - shift)
|
|
});
|
|
|
|
self.data_file
|
|
.save_prune(tmp_prune_file_data.clone(), &off_to_rm, prune_cb)?;
|
|
}
|
|
|
|
// 3. Update the prune list and write to disk.
|
|
{
|
|
for pos in leaves_removed.iter() {
|
|
self.prune_list.add(pos.into());
|
|
}
|
|
self.prune_list.flush()?;
|
|
}
|
|
|
|
// 4. Rename the compact copy of hash file and reopen it.
|
|
fs::rename(
|
|
tmp_prune_file_hash.clone(),
|
|
format!("{}/{}", self.data_dir, PMMR_HASH_FILE),
|
|
)?;
|
|
self.hash_file = DataFile::open(&format!("{}/{}", self.data_dir, PMMR_HASH_FILE))?;
|
|
|
|
// 5. Rename the compact copy of the data file and reopen it.
|
|
fs::rename(
|
|
tmp_prune_file_data.clone(),
|
|
format!("{}/{}", self.data_dir, PMMR_DATA_FILE),
|
|
)?;
|
|
self.data_file = DataFile::open(&format!("{}/{}", self.data_dir, PMMR_DATA_FILE))?;
|
|
|
|
// 6. Write the leaf_set to disk.
|
|
// Optimize the bitmap storage in the process.
|
|
self.leaf_set.flush()?;
|
|
|
|
// 7. cleanup rewind files
|
|
self.clean_rewind_files()?;
|
|
|
|
Ok(true)
|
|
}
|
|
|
|
fn clean_rewind_files(&self) -> io::Result<u32> {
|
|
let data_dir = self.data_dir.clone();
|
|
let pattern = format!("{}.", PMMR_LEAF_FILE);
|
|
clean_files_by_prefix(data_dir, &pattern, REWIND_FILE_CLEANUP_DURATION_SECONDS)
|
|
}
|
|
|
|
fn pos_to_rm(&self, cutoff_pos: u64, rewind_rm_pos: &Bitmap) -> (Bitmap, Bitmap) {
|
|
let mut expanded = Bitmap::create();
|
|
|
|
let leaf_pos_to_rm =
|
|
self.leaf_set
|
|
.removed_pre_cutoff(cutoff_pos, rewind_rm_pos, &self.prune_list);
|
|
|
|
for x in leaf_pos_to_rm.iter() {
|
|
expanded.add(x);
|
|
let mut current = x as u64;
|
|
loop {
|
|
let (parent, sibling) = family(current);
|
|
let sibling_pruned = self.is_pruned_root(sibling);
|
|
|
|
// if sibling previously pruned
|
|
// push it back onto list of pos to remove
|
|
// so we can remove it and traverse up to parent
|
|
if sibling_pruned {
|
|
expanded.add(sibling as u32);
|
|
}
|
|
|
|
if sibling_pruned || expanded.contains(sibling as u32) {
|
|
expanded.add(parent as u32);
|
|
current = parent;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
(leaf_pos_to_rm, removed_excl_roots(&expanded))
|
|
}
|
|
}
|
|
|
|
/// Filter remove list to exclude roots.
|
|
/// We want to keep roots around so we have hashes for Merkle proofs.
|
|
fn removed_excl_roots(removed: &Bitmap) -> Bitmap {
|
|
removed
|
|
.iter()
|
|
.filter(|pos| {
|
|
let (parent_pos, _) = family(*pos as u64);
|
|
removed.contains(parent_pos as u32)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Quietly clean a directory up based on a given prefix.
|
|
/// If the file was accessed within cleanup_duration_seconds from the beginning of
|
|
/// the function call, it will not be deleted. To delete all files, set cleanup_duration_seconds
|
|
/// to zero.
|
|
///
|
|
/// Precondition is that path points to a directory.
|
|
///
|
|
/// If you have files such as
|
|
/// ```text
|
|
/// foo
|
|
/// foo.1
|
|
/// foo.2
|
|
/// .
|
|
/// .
|
|
/// .
|
|
/// .
|
|
/// .
|
|
/// ```
|
|
///
|
|
/// call this function and you will get
|
|
///
|
|
/// ```text
|
|
/// foo
|
|
/// ```
|
|
///
|
|
/// in the directory
|
|
///
|
|
/// The return value will be the number of files that were deleted.
|
|
///
|
|
/// This function will return an error whenever the call to `std;:fs::read_dir`
|
|
/// fails on the given path for any reason.
|
|
///
|
|
|
|
pub fn clean_files_by_prefix<P: AsRef<std::path::Path>>(
|
|
path: P,
|
|
prefix_to_delete: &str,
|
|
cleanup_duration_seconds: u64,
|
|
) -> io::Result<u32> {
|
|
let now = time::SystemTime::now();
|
|
let cleanup_duration = time::Duration::from_secs(cleanup_duration_seconds);
|
|
|
|
let number_of_files_deleted: u32 = fs::read_dir(&path)?
|
|
.flat_map(
|
|
|possible_dir_entry| -> Result<u32, Box<std::error::Error>> {
|
|
// result implements iterator and so if we were to use map here
|
|
// we would have a list of Result<u32, Box<std::error::Error>>
|
|
// but because we use flat_map, the errors get "discarded" and we are
|
|
// left with a clean iterator over u32s
|
|
|
|
// the error cases that come out of this code are numerous and
|
|
// we don't really mind throwing them away because the main point
|
|
// here is to clean up some files, if it doesn't work out it's not
|
|
// the end of the world
|
|
|
|
let dir_entry: std::fs::DirEntry = possible_dir_entry?;
|
|
let metadata = dir_entry.metadata()?;
|
|
if metadata.is_dir() {
|
|
return Ok(0); // skip directories unconditionally
|
|
}
|
|
let accessed = metadata.accessed()?;
|
|
let duration_since_accessed = now.duration_since(accessed)?;
|
|
if duration_since_accessed <= cleanup_duration {
|
|
return Ok(0); // these files are still too new
|
|
}
|
|
let file_name = dir_entry
|
|
.file_name()
|
|
.into_string()
|
|
.ok()
|
|
.ok_or("could not convert filename into utf-8")?;
|
|
|
|
// check to see if we want to delete this file?
|
|
if file_name.starts_with(prefix_to_delete)
|
|
&& file_name.len() > prefix_to_delete.len()
|
|
{
|
|
// we want to delete it, try to do so
|
|
if fs::remove_file(dir_entry.path()).is_ok() {
|
|
// we successfully deleted a file
|
|
return Ok(1);
|
|
}
|
|
}
|
|
|
|
// we either did not want to delete this file or could
|
|
// not for whatever reason. 0 files deleted.
|
|
Ok(0)
|
|
},
|
|
)
|
|
.sum();
|
|
|
|
Ok(number_of_files_deleted)
|
|
}
|