grin/wallet/src/receiver.rs
Quentin Le Sceller fcfe7bc6a4 Basic Dandelion transaction routing (#719)
* Initial Dandelion Commit
* Changed stem_tx_pool to tx_stempool
* Introduction of stem memory pool and stem pool config
* Pool push now send to stem memory pool
* Add stem transaction functions
* Add stem transaction pool
* Drastically simplified code structure
* Add monitor transactions
* Add Dandelion monitor and remove transactions from stempool
* Add peer relay monitor
* Reconcile block with stempool
* Fix total size bug
* Add fluff option for pool push
* Added details on dandelion monitor
* Fix issue with missing parent
* Child transaction with stempool parent are now forced stem
* Update Dandelion Relay from outgoing peers
* Fix missing pool reconciliation
* Add the ability to fluff a transaction directly
* Fix tests for Dandelion
* Missing send_stem_transaction method...
* Add fluff handler for wallet
* Add logger when successfully updated Dandelion relay
* Launch transaction monitor last
* Fix dandelion relay misplaced
* Add logging and updating for stempool
* Additionnal check for stem transaction
* Fix 2 Locks in a row
2018-03-20 03:18:54 +00:00

502 lines
14 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Provides the JSON/HTTP API for wallets to receive payments. Because
//! receiving money in MimbleWimble requires an interactive exchange, a
//! wallet server that's running at all time is required in many cases.
use bodyparser;
use iron::prelude::*;
use iron::Handler;
use iron::status;
use serde_json;
use uuid::Uuid;
use api;
use core::consensus::reward;
use core::core::{amount_to_hr_string, build, Block, Committed, Output, Transaction, TxKernel};
use core::{global, ser};
use keychain::{BlindingFactor, Identifier, Keychain};
use types::*;
use util::{secp, to_hex, LOGGER};
use urlencoded::UrlEncodedQuery;
use failure::ResultExt;
/// Dummy wrapper for the hex-encoded serialized transaction.
#[derive(Serialize, Deserialize)]
pub struct TxWrapper {
pub tx_hex: String,
}
/// Receive Part 1 of interactive transactions from sender, Sender Initiation
/// Return result of part 2, Recipient Initation, to sender
/// -Receiver receives inputs, outputs xS * G and kS * G
/// -Receiver picks random blinding factors for all outputs being received, computes total blinding
/// excess xR
/// -Receiver picks random nonce kR
/// -Receiver computes Schnorr challenge e = H(M | kR * G + kS * G)
/// -Receiver computes their part of signature, sR = kR + e * xR
/// -Receiver responds with sR, blinding excess xR * G, public nonce kR * G
fn handle_sender_initiation(
config: &WalletConfig,
keychain: &Keychain,
partial_tx: &PartialTx,
) -> Result<PartialTx, Error> {
let (amount, _sender_pub_blinding, sender_pub_nonce, kernel_offset, _sig, tx) =
read_partial_tx(keychain, partial_tx)?;
let root_key_id = keychain.root_key_id();
// double check the fee amount included in the partial tx
// we don't necessarily want to just trust the sender
// we could just overwrite the fee here (but we won't) due to the ecdsa sig
let fee = tx_fee(tx.inputs.len(), tx.outputs.len() + 1, None);
if fee != tx.fee() {
return Err(ErrorKind::FeeDispute {
sender_fee: tx.fee(),
recipient_fee: fee,
})?;
}
if fee > amount {
info!(
LOGGER,
"Rejected the transfer because transaction fee ({}) exceeds received amount ({}).",
amount_to_hr_string(fee),
amount_to_hr_string(amount)
);
return Err(ErrorKind::FeeExceedsAmount {
sender_amount: amount,
recipient_fee: fee,
})?;
}
let out_amount = amount - fee;
// First step is just to get the excess sum of the outputs we're participating
// in Output and key needs to be stored until transaction finalisation time,
// somehow
let key_id = WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
let (key_id, derivation) = next_available_key(&wallet_data, keychain);
wallet_data.add_output(OutputData {
root_key_id: root_key_id.clone(),
key_id: key_id.clone(),
n_child: derivation,
value: out_amount,
status: OutputStatus::Unconfirmed,
height: 0,
lock_height: 0,
is_coinbase: false,
block: None,
merkle_proof: None,
});
key_id
})?;
// Still handy for getting the blinding sum
let (_, blind_sum) =
build::partial_transaction(vec![build::output(out_amount, key_id.clone())], keychain)
.context(ErrorKind::Keychain)?;
warn!(LOGGER, "Creating new aggsig context");
// Create a new aggsig context
// this will create a new blinding sum and nonce, and store them
let blind = blind_sum
.secret_key(&keychain.secp())
.context(ErrorKind::Keychain)?;
keychain
.aggsig_create_context(&partial_tx.id, blind)
.context(ErrorKind::Keychain)?;
keychain.aggsig_add_output(&partial_tx.id, &key_id);
let sig_part = keychain
.aggsig_calculate_partial_sig(&partial_tx.id, &sender_pub_nonce, fee, tx.lock_height())
.unwrap();
// Build the response, which should contain sR, blinding excess xR * G, public
// nonce kR * G
let mut partial_tx = build_partial_tx(
&partial_tx.id,
keychain,
amount,
kernel_offset,
Some(sig_part),
tx,
);
partial_tx.phase = PartialTxPhase::ReceiverInitiation;
Ok(partial_tx)
}
/// Receive Part 3 of interactive transactions from sender, Sender Confirmation
/// Return Ok/Error
/// -Receiver receives sS
/// -Receiver verifies sender's sig, by verifying that kS * G + e *xS * G = sS * G
/// -Receiver calculates final sig as s=(sS+sR, kS * G+kR * G)
/// -Receiver puts into TX kernel:
///
/// Signature S
/// pubkey xR * G+xS * G
/// fee (= M)
/// -Receiver sends completed TX to mempool. responds OK to sender
fn handle_sender_confirmation(
config: &WalletConfig,
keychain: &Keychain,
partial_tx: &PartialTx,
fluff: bool,
) -> Result<PartialTx, Error> {
let (amount, sender_pub_blinding, sender_pub_nonce, kernel_offset, sender_sig_part, tx) =
read_partial_tx(keychain, partial_tx)?;
let sender_sig_part = sender_sig_part.unwrap();
let res = keychain.aggsig_verify_partial_sig(
&partial_tx.id,
&sender_sig_part,
&sender_pub_nonce,
&sender_pub_blinding,
tx.fee(),
tx.lock_height(),
);
if !res {
error!(LOGGER, "Partial Sig from sender invalid.");
return Err(ErrorKind::Signature("Partial Sig from sender invalid."))?;
}
// Just calculate our sig part again instead of storing
let our_sig_part = keychain
.aggsig_calculate_partial_sig(
&partial_tx.id,
&sender_pub_nonce,
tx.fee(),
tx.lock_height(),
)
.unwrap();
// And the final signature
let final_sig = keychain
.aggsig_calculate_final_sig(
&partial_tx.id,
&sender_sig_part,
&our_sig_part,
&sender_pub_nonce,
)
.unwrap();
// Calculate the final public key (for our own sanity check)
let final_pubkey = keychain
.aggsig_calculate_final_pubkey(&partial_tx.id, &sender_pub_blinding)
.unwrap();
// Check our final sig verifies
let res = keychain.aggsig_verify_final_sig_build_msg(
&final_sig,
&final_pubkey,
tx.fee(),
tx.lock_height(),
);
if !res {
error!(LOGGER, "Final aggregated signature invalid.");
return Err(ErrorKind::Signature("Final aggregated signature invalid."))?;
}
let final_tx = build_final_transaction(
&partial_tx.id,
config,
keychain,
amount,
kernel_offset,
&final_sig,
tx.clone(),
)?;
let tx_hex = to_hex(ser::ser_vec(&final_tx).unwrap());
let url;
if fluff {
url = format!(
"{}/v1/pool/push?fluff",
config.check_node_api_http_addr.as_str()
);
} else {
url = format!("{}/v1/pool/push", config.check_node_api_http_addr.as_str());
}
api::client::post(url.as_str(), &TxWrapper { tx_hex: tx_hex }).context(ErrorKind::Node)?;
// Return what we've actually posted
// TODO - why build_partial_tx here? Just a naming issue?
let mut partial_tx = build_partial_tx(
&partial_tx.id,
keychain,
amount,
kernel_offset,
Some(final_sig),
tx,
);
partial_tx.phase = PartialTxPhase::ReceiverConfirmation;
Ok(partial_tx)
}
/// Component used to receive coins, implements all the receiving end of the
/// wallet REST API as well as some of the command-line operations.
#[derive(Clone)]
pub struct WalletReceiver {
pub keychain: Keychain,
pub config: WalletConfig,
}
impl Handler for WalletReceiver {
fn handle(&self, req: &mut Request) -> IronResult<Response> {
let struct_body = req.get::<bodyparser::Struct<PartialTx>>();
let mut fluff = false;
if let Ok(params) = req.get_ref::<UrlEncodedQuery>() {
if let Some(_) = params.get("fluff") {
fluff = true;
}
}
if let Ok(Some(partial_tx)) = struct_body {
match partial_tx.phase {
PartialTxPhase::SenderInitiation => {
let resp_tx = handle_sender_initiation(
&self.config,
&self.keychain,
&partial_tx,
).map_err(|e| {
error!(LOGGER, "Phase 1 Sender Initiation -> Problematic partial tx, looks like this: {:?}", partial_tx);
api::Error::Internal(format!(
"Error processing partial transaction: {:?}",
e
))
})
.unwrap();
let json = serde_json::to_string(&resp_tx).unwrap();
Ok(Response::with((status::Ok, json)))
}
PartialTxPhase::SenderConfirmation => {
let resp_tx = handle_sender_confirmation(
&self.config,
&self.keychain,
&partial_tx,
fluff,
).map_err(|e| {
error!(LOGGER, "Phase 3 Sender Confirmation -> Problematic partial tx, looks like this: {:?}", partial_tx);
api::Error::Internal(format!(
"Error processing partial transaction: {:?}",
e
))
})
.unwrap();
let json = serde_json::to_string(&resp_tx).unwrap();
Ok(Response::with((status::Ok, json)))
}
_ => {
error!(LOGGER, "Unhandled Phase: {:?}", partial_tx);
Ok(Response::with((status::BadRequest, "Unhandled Phase")))
}
}
} else {
Ok(Response::with((status::BadRequest, "")))
}
}
}
fn retrieve_existing_key(wallet_data: &WalletData, key_id: Identifier) -> (Identifier, u32) {
if let Some(existing) = wallet_data.get_output(&key_id) {
let key_id = existing.key_id.clone();
let derivation = existing.n_child;
(key_id, derivation)
} else {
panic!("should never happen");
}
}
fn next_available_key(wallet_data: &WalletData, keychain: &Keychain) -> (Identifier, u32) {
let root_key_id = keychain.root_key_id();
let derivation = wallet_data.next_child(root_key_id.clone());
let key_id = keychain.derive_key_id(derivation).unwrap();
(key_id, derivation)
}
/// Build a coinbase output and the corresponding kernel
pub fn receive_coinbase(
config: &WalletConfig,
keychain: &Keychain,
block_fees: &BlockFees,
) -> Result<(Output, TxKernel, BlockFees), Error> {
let root_key_id = keychain.root_key_id();
let height = block_fees.height;
let lock_height = height + global::coinbase_maturity();
// Now acquire the wallet lock and write the new output.
let (key_id, derivation) = WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
let key_id = block_fees.key_id();
let (key_id, derivation) = match key_id {
Some(key_id) => retrieve_existing_key(&wallet_data, key_id),
None => next_available_key(&wallet_data, keychain),
};
// track the new output and return the stuff needed for reward
wallet_data.add_output(OutputData {
root_key_id: root_key_id.clone(),
key_id: key_id.clone(),
n_child: derivation,
value: reward(block_fees.fees),
status: OutputStatus::Unconfirmed,
height: height,
lock_height: lock_height,
is_coinbase: true,
block: None,
merkle_proof: None,
});
(key_id, derivation)
})?;
debug!(
LOGGER,
"receive_coinbase: built candidate output - {:?}, {}",
key_id.clone(),
derivation,
);
let mut block_fees = block_fees.clone();
block_fees.key_id = Some(key_id.clone());
debug!(LOGGER, "receive_coinbase: {:?}", block_fees);
let (out, kern) = Block::reward_output(&keychain, &key_id, block_fees.fees, block_fees.height)
.context(ErrorKind::Keychain)?;
Ok((out, kern, block_fees))
}
/// builds a final transaction after the aggregated sig exchange
fn build_final_transaction(
tx_id: &Uuid,
config: &WalletConfig,
keychain: &Keychain,
amount: u64,
kernel_offset: BlindingFactor,
excess_sig: &secp::Signature,
tx: Transaction,
) -> Result<Transaction, Error> {
let root_key_id = keychain.root_key_id();
// double check the fee amount included in the partial tx
// we don't necessarily want to just trust the sender
// we could just overwrite the fee here (but we won't) due to the ecdsa sig
let fee = tx_fee(tx.inputs.len(), tx.outputs.len() + 1, None);
if fee != tx.fee() {
return Err(ErrorKind::FeeDispute {
sender_fee: tx.fee(),
recipient_fee: fee,
})?;
}
if fee > amount {
info!(
LOGGER,
"Rejected the transfer because transaction fee ({}) exceeds received amount ({}).",
amount_to_hr_string(fee),
amount_to_hr_string(amount)
);
return Err(ErrorKind::FeeExceedsAmount {
sender_amount: amount,
recipient_fee: fee,
})?;
}
let out_amount = amount - fee;
// Get output we created in earlier step
// TODO: will just be one for now, support multiple later
let output_vec = keychain.aggsig_get_outputs(tx_id);
// operate within a lock on wallet data
let (key_id, derivation) = WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
let (key_id, derivation) = retrieve_existing_key(&wallet_data, output_vec[0].clone());
wallet_data.add_output(OutputData {
root_key_id: root_key_id.clone(),
key_id: key_id.clone(),
n_child: derivation,
value: out_amount,
status: OutputStatus::Unconfirmed,
height: 0,
lock_height: 0,
is_coinbase: false,
block: None,
merkle_proof: None,
});
(key_id, derivation)
})?;
// Build final transaction, the sum of which should
// be the same as the exchanged excess values
let mut final_tx = build::transaction(
vec![
build::initial_tx(tx),
build::output(out_amount, key_id.clone()),
build::with_offset(kernel_offset),
],
keychain,
).context(ErrorKind::Keychain)?;
// build the final excess based on final tx and offset
let final_excess = {
// sum the input/output commitments on the final tx
let tx_excess = final_tx.sum_commitments().context(ErrorKind::Transaction)?;
// subtract the kernel_excess (built from kernel_offset)
let offset_excess = keychain
.secp()
.commit(0, kernel_offset.secret_key(&keychain.secp()).unwrap())
.unwrap();
keychain
.secp()
.commit_sum(vec![tx_excess], vec![offset_excess])
.context(ErrorKind::Transaction)?
};
// update the tx kernel to reflect the offset excess and sig
assert_eq!(final_tx.kernels.len(), 1);
final_tx.kernels[0].excess = final_excess.clone();
final_tx.kernels[0].excess_sig = excess_sig.clone();
// confirm the kernel verifies successfully before proceeding
final_tx.kernels[0]
.verify()
.context(ErrorKind::Transaction)?;
// confirm the overall transaction is valid (including the updated kernel)
let _ = final_tx.validate().context(ErrorKind::Transaction)?;
debug!(
LOGGER,
"Finalized transaction and built output - {:?}, {:?}, {}",
root_key_id.clone(),
key_id.clone(),
derivation,
);
Ok(final_tx)
}