mirror of
https://github.com/mimblewimble/grin.git
synced 2025-01-21 03:21:08 +03:00
a8b8dc3a7f
* cleanup how we handle key splitting for transaction offset add test to demonstrate a pair of transaction halves sharing same kernel excess * cleanup * cleanup
692 lines
19 KiB
Rust
692 lines
19 KiB
Rust
// Copyright 2020 The Grin Developers
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
//! Core tests
|
|
|
|
pub mod common;
|
|
|
|
use self::core::core::block::BlockHeader;
|
|
use self::core::core::block::Error::KernelLockHeight;
|
|
use self::core::core::hash::{Hashed, ZERO_HASH};
|
|
use self::core::core::verifier_cache::{LruVerifierCache, VerifierCache};
|
|
use self::core::core::{
|
|
aggregate, deaggregate, KernelFeatures, Output, Transaction, TxKernel, Weighting,
|
|
};
|
|
use self::core::libtx::build::{self, initial_tx, input, output, with_excess};
|
|
use self::core::libtx::{aggsig, ProofBuilder};
|
|
use self::core::{global, ser};
|
|
use crate::common::{new_block, tx1i1o, tx1i2o, tx2i1o};
|
|
use grin_core as core;
|
|
use keychain::{BlindingFactor, ExtKeychain, Keychain};
|
|
use std::sync::Arc;
|
|
use util::static_secp_instance;
|
|
use util::RwLock;
|
|
|
|
// Setup test with AutomatedTesting chain_type;
|
|
fn test_setup() {
|
|
global::set_local_chain_type(global::ChainTypes::AutomatedTesting);
|
|
}
|
|
|
|
#[test]
|
|
fn simple_tx_ser() {
|
|
let tx = tx2i1o();
|
|
|
|
// Default protocol version.
|
|
{
|
|
let mut vec = Vec::new();
|
|
ser::serialize_default(&mut vec, &tx).expect("serialization failed");
|
|
assert_eq!(vec.len(), 947);
|
|
}
|
|
|
|
// Explicit protocol version 1.
|
|
{
|
|
let mut vec = Vec::new();
|
|
ser::serialize(&mut vec, ser::ProtocolVersion(1), &tx).expect("serialization failed");
|
|
assert_eq!(vec.len(), 955);
|
|
}
|
|
|
|
// Explicit protocol version 2.
|
|
{
|
|
let mut vec = Vec::new();
|
|
ser::serialize(&mut vec, ser::ProtocolVersion(2), &tx).expect("serialization failed");
|
|
assert_eq!(vec.len(), 947);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn simple_tx_ser_deser() {
|
|
test_setup();
|
|
let tx = tx2i1o();
|
|
let mut vec = Vec::new();
|
|
ser::serialize_default(&mut vec, &tx).expect("serialization failed");
|
|
let dtx: Transaction = ser::deserialize_default(&mut &vec[..]).unwrap();
|
|
assert_eq!(dtx.fee(), 2);
|
|
assert_eq!(dtx.inputs().len(), 2);
|
|
assert_eq!(dtx.outputs().len(), 1);
|
|
assert_eq!(tx.hash(), dtx.hash());
|
|
}
|
|
|
|
#[test]
|
|
fn tx_double_ser_deser() {
|
|
test_setup();
|
|
// checks serializing doesn't mess up the tx and produces consistent results
|
|
let btx = tx2i1o();
|
|
|
|
let mut vec = Vec::new();
|
|
assert!(ser::serialize_default(&mut vec, &btx).is_ok());
|
|
let dtx: Transaction = ser::deserialize_default(&mut &vec[..]).unwrap();
|
|
|
|
let mut vec2 = Vec::new();
|
|
assert!(ser::serialize_default(&mut vec2, &btx).is_ok());
|
|
let dtx2: Transaction = ser::deserialize_default(&mut &vec2[..]).unwrap();
|
|
|
|
assert_eq!(btx.hash(), dtx.hash());
|
|
assert_eq!(dtx.hash(), dtx2.hash());
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "Keychain Error")]
|
|
fn test_zero_commit_fails() {
|
|
test_setup();
|
|
let keychain = ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
|
|
// blinding should fail as signing with a zero r*G shouldn't work
|
|
build::transaction(
|
|
KernelFeatures::Plain { fee: 0 },
|
|
vec![input(10, key_id1.clone()), output(10, key_id1)],
|
|
&keychain,
|
|
&builder,
|
|
)
|
|
.unwrap();
|
|
}
|
|
|
|
fn verifier_cache() -> Arc<RwLock<dyn VerifierCache>> {
|
|
Arc::new(RwLock::new(LruVerifierCache::new()))
|
|
}
|
|
|
|
#[test]
|
|
fn build_tx_kernel() {
|
|
test_setup();
|
|
let keychain = ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
|
|
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
|
|
|
|
// first build a valid tx with corresponding blinding factor
|
|
let tx = build::transaction(
|
|
KernelFeatures::Plain { fee: 2 },
|
|
vec![input(10, key_id1), output(5, key_id2), output(3, key_id3)],
|
|
&keychain,
|
|
&builder,
|
|
)
|
|
.unwrap();
|
|
|
|
// check the tx is valid
|
|
tx.validate(Weighting::AsTransaction, verifier_cache())
|
|
.unwrap();
|
|
|
|
// check the kernel is also itself valid
|
|
assert_eq!(tx.kernels().len(), 1);
|
|
let kern = &tx.kernels()[0];
|
|
kern.verify().unwrap();
|
|
|
|
assert_eq!(kern.features, KernelFeatures::Plain { fee: 2 });
|
|
assert_eq!(2, tx.fee());
|
|
}
|
|
|
|
// Proof of concept demonstrating we can build two transactions that share
|
|
// the *same* kernel public excess. This is a key part of building a transaction as two
|
|
// "halves" for NRD kernels.
|
|
// Note: In a real world scenario multiple participants would build the kernel signature
|
|
// using signature aggregation. No party would see the full private kernel excess and
|
|
// the halves would need to be constructed with carefully crafted individual offsets to
|
|
// adjust the excess as required.
|
|
// For the sake of convenience we are simply constructing the kernel directly and we have access
|
|
// to the full private excess.
|
|
#[test]
|
|
fn build_two_half_kernels() {
|
|
test_setup();
|
|
let keychain = ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
|
|
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
|
|
|
|
// build kernel with associated private excess
|
|
let mut kernel = TxKernel::with_features(KernelFeatures::Plain { fee: 2 });
|
|
|
|
// Construct the message to be signed.
|
|
let msg = kernel.msg_to_sign().unwrap();
|
|
|
|
// Generate a kernel with public excess and associated signature.
|
|
let excess = BlindingFactor::rand(&keychain.secp());
|
|
let skey = excess.secret_key(&keychain.secp()).unwrap();
|
|
kernel.excess = keychain.secp().commit(0, skey).unwrap();
|
|
let pubkey = &kernel.excess.to_pubkey(&keychain.secp()).unwrap();
|
|
kernel.excess_sig =
|
|
aggsig::sign_with_blinding(&keychain.secp(), &msg, &excess, Some(&pubkey)).unwrap();
|
|
kernel.verify().unwrap();
|
|
|
|
let tx1 = build::transaction_with_kernel(
|
|
vec![input(10, key_id1), output(8, key_id2.clone())],
|
|
kernel.clone(),
|
|
excess.clone(),
|
|
&keychain,
|
|
&builder,
|
|
)
|
|
.unwrap();
|
|
|
|
let tx2 = build::transaction_with_kernel(
|
|
vec![input(8, key_id2), output(6, key_id3)],
|
|
kernel.clone(),
|
|
excess.clone(),
|
|
&keychain,
|
|
&builder,
|
|
)
|
|
.unwrap();
|
|
|
|
assert_eq!(
|
|
tx1.validate(Weighting::AsTransaction, verifier_cache()),
|
|
Ok(()),
|
|
);
|
|
|
|
assert_eq!(
|
|
tx2.validate(Weighting::AsTransaction, verifier_cache()),
|
|
Ok(()),
|
|
);
|
|
|
|
// The transactions share an identical kernel.
|
|
assert_eq!(tx1.kernels()[0], tx2.kernels()[0]);
|
|
|
|
// The public kernel excess is shared between both "halves".
|
|
assert_eq!(tx1.kernels()[0].excess(), tx2.kernels()[0].excess());
|
|
|
|
// Each transaction is built from different inputs and outputs.
|
|
// The offset differs to compensate for the shared excess commitments.
|
|
assert!(tx1.offset != tx2.offset);
|
|
|
|
// For completeness, these are different transactions.
|
|
assert!(tx1.hash() != tx2.hash());
|
|
}
|
|
|
|
// Combine two transactions into one big transaction (with multiple kernels)
|
|
// and check it still validates.
|
|
#[test]
|
|
fn transaction_cut_through() {
|
|
test_setup();
|
|
let tx1 = tx1i2o();
|
|
let tx2 = tx2i1o();
|
|
|
|
assert!(tx1
|
|
.validate(Weighting::AsTransaction, verifier_cache())
|
|
.is_ok());
|
|
assert!(tx2
|
|
.validate(Weighting::AsTransaction, verifier_cache())
|
|
.is_ok());
|
|
|
|
let vc = verifier_cache();
|
|
|
|
// now build a "cut_through" tx from tx1 and tx2
|
|
let tx3 = aggregate(vec![tx1, tx2]).unwrap();
|
|
|
|
assert!(tx3.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
}
|
|
|
|
// Attempt to deaggregate a multi-kernel transaction in a different way
|
|
#[test]
|
|
fn multi_kernel_transaction_deaggregation() {
|
|
test_setup();
|
|
let tx1 = tx1i1o();
|
|
let tx2 = tx1i1o();
|
|
let tx3 = tx1i1o();
|
|
let tx4 = tx1i1o();
|
|
|
|
let vc = verifier_cache();
|
|
|
|
assert!(tx1.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx2.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx3.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx4.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let tx1234 = aggregate(vec![tx1.clone(), tx2.clone(), tx3.clone(), tx4.clone()]).unwrap();
|
|
let tx12 = aggregate(vec![tx1, tx2]).unwrap();
|
|
let tx34 = aggregate(vec![tx3, tx4]).unwrap();
|
|
|
|
assert!(tx1234
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert!(tx12.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx34.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let deaggregated_tx34 = deaggregate(tx1234.clone(), vec![tx12.clone()]).unwrap();
|
|
assert!(deaggregated_tx34
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert_eq!(tx34, deaggregated_tx34);
|
|
|
|
let deaggregated_tx12 = deaggregate(tx1234, vec![tx34]).unwrap();
|
|
|
|
assert!(deaggregated_tx12
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert_eq!(tx12, deaggregated_tx12);
|
|
}
|
|
|
|
#[test]
|
|
fn multi_kernel_transaction_deaggregation_2() {
|
|
test_setup();
|
|
let tx1 = tx1i1o();
|
|
let tx2 = tx1i1o();
|
|
let tx3 = tx1i1o();
|
|
|
|
let vc = verifier_cache();
|
|
|
|
assert!(tx1.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx2.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx3.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let tx123 = aggregate(vec![tx1.clone(), tx2.clone(), tx3.clone()]).unwrap();
|
|
let tx12 = aggregate(vec![tx1, tx2]).unwrap();
|
|
|
|
assert!(tx123.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx12.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let deaggregated_tx3 = deaggregate(tx123, vec![tx12]).unwrap();
|
|
assert!(deaggregated_tx3
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert_eq!(tx3, deaggregated_tx3);
|
|
}
|
|
|
|
#[test]
|
|
fn multi_kernel_transaction_deaggregation_3() {
|
|
test_setup();
|
|
let tx1 = tx1i1o();
|
|
let tx2 = tx1i1o();
|
|
let tx3 = tx1i1o();
|
|
|
|
let vc = verifier_cache();
|
|
|
|
assert!(tx1.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx2.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx3.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let tx123 = aggregate(vec![tx1.clone(), tx2.clone(), tx3.clone()]).unwrap();
|
|
let tx13 = aggregate(vec![tx1, tx3]).unwrap();
|
|
let tx2 = aggregate(vec![tx2]).unwrap();
|
|
|
|
assert!(tx123.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx2.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let deaggregated_tx13 = deaggregate(tx123, vec![tx2]).unwrap();
|
|
assert!(deaggregated_tx13
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert_eq!(tx13, deaggregated_tx13);
|
|
}
|
|
|
|
#[test]
|
|
fn multi_kernel_transaction_deaggregation_4() {
|
|
test_setup();
|
|
let tx1 = tx1i1o();
|
|
let tx2 = tx1i1o();
|
|
let tx3 = tx1i1o();
|
|
let tx4 = tx1i1o();
|
|
let tx5 = tx1i1o();
|
|
|
|
let vc = verifier_cache();
|
|
|
|
assert!(tx1.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx2.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx3.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx4.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx5.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let tx12345 = aggregate(vec![
|
|
tx1.clone(),
|
|
tx2.clone(),
|
|
tx3.clone(),
|
|
tx4.clone(),
|
|
tx5.clone(),
|
|
])
|
|
.unwrap();
|
|
assert!(tx12345
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
|
|
let deaggregated_tx5 = deaggregate(tx12345, vec![tx1, tx2, tx3, tx4]).unwrap();
|
|
assert!(deaggregated_tx5
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert_eq!(tx5, deaggregated_tx5);
|
|
}
|
|
|
|
#[test]
|
|
fn multi_kernel_transaction_deaggregation_5() {
|
|
test_setup();
|
|
let tx1 = tx1i1o();
|
|
let tx2 = tx1i1o();
|
|
let tx3 = tx1i1o();
|
|
let tx4 = tx1i1o();
|
|
let tx5 = tx1i1o();
|
|
|
|
let vc = verifier_cache();
|
|
|
|
assert!(tx1.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx2.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx3.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx4.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx5.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let tx12345 = aggregate(vec![
|
|
tx1.clone(),
|
|
tx2.clone(),
|
|
tx3.clone(),
|
|
tx4.clone(),
|
|
tx5.clone(),
|
|
])
|
|
.unwrap();
|
|
let tx12 = aggregate(vec![tx1, tx2]).unwrap();
|
|
let tx34 = aggregate(vec![tx3, tx4]).unwrap();
|
|
|
|
assert!(tx12345
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
|
|
let deaggregated_tx5 = deaggregate(tx12345, vec![tx12, tx34]).unwrap();
|
|
assert!(deaggregated_tx5
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert_eq!(tx5, deaggregated_tx5);
|
|
}
|
|
|
|
// Attempt to deaggregate a multi-kernel transaction
|
|
#[test]
|
|
fn basic_transaction_deaggregation() {
|
|
test_setup();
|
|
let tx1 = tx1i2o();
|
|
let tx2 = tx2i1o();
|
|
|
|
let vc = verifier_cache();
|
|
|
|
assert!(tx1.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
assert!(tx2.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
// now build a "cut_through" tx from tx1 and tx2
|
|
let tx3 = aggregate(vec![tx1.clone(), tx2.clone()]).unwrap();
|
|
|
|
assert!(tx3.validate(Weighting::AsTransaction, vc.clone()).is_ok());
|
|
|
|
let deaggregated_tx1 = deaggregate(tx3.clone(), vec![tx2.clone()]).unwrap();
|
|
|
|
assert!(deaggregated_tx1
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert_eq!(tx1, deaggregated_tx1);
|
|
|
|
let deaggregated_tx2 = deaggregate(tx3, vec![tx1]).unwrap();
|
|
|
|
assert!(deaggregated_tx2
|
|
.validate(Weighting::AsTransaction, vc.clone())
|
|
.is_ok());
|
|
assert_eq!(tx2, deaggregated_tx2);
|
|
}
|
|
|
|
#[test]
|
|
fn hash_output() {
|
|
let keychain = ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
|
|
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
|
|
|
|
let tx = build::transaction(
|
|
KernelFeatures::Plain { fee: 1 },
|
|
vec![input(75, key_id1), output(42, key_id2), output(32, key_id3)],
|
|
&keychain,
|
|
&builder,
|
|
)
|
|
.unwrap();
|
|
let h = tx.outputs()[0].hash();
|
|
assert!(h != ZERO_HASH);
|
|
let h2 = tx.outputs()[1].hash();
|
|
assert!(h != h2);
|
|
}
|
|
|
|
#[ignore]
|
|
#[test]
|
|
fn blind_tx() {
|
|
let btx = tx2i1o();
|
|
assert!(btx
|
|
.validate(Weighting::AsTransaction, verifier_cache())
|
|
.is_ok());
|
|
|
|
// Ignored for bullet proofs, because calling range_proof_info
|
|
// with a bullet proof causes painful errors
|
|
|
|
// checks that the range proof on our blind output is sufficiently hiding
|
|
let Output { proof, .. } = btx.outputs()[0];
|
|
|
|
let secp = static_secp_instance();
|
|
let secp = secp.lock();
|
|
let info = secp.range_proof_info(proof);
|
|
|
|
assert!(info.min == 0);
|
|
assert!(info.max == u64::max_value());
|
|
}
|
|
|
|
#[test]
|
|
fn tx_hash_diff() {
|
|
let btx1 = tx2i1o();
|
|
let btx2 = tx1i1o();
|
|
|
|
if btx1.hash() == btx2.hash() {
|
|
panic!("diff txs have same hash")
|
|
}
|
|
}
|
|
|
|
/// Simulate the standard exchange between 2 parties when creating a basic
|
|
/// 2 inputs, 2 outputs transaction.
|
|
#[test]
|
|
fn tx_build_exchange() {
|
|
test_setup();
|
|
let keychain = ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
|
|
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
|
|
let key_id4 = ExtKeychain::derive_key_id(1, 4, 0, 0, 0);
|
|
|
|
let (tx_alice, blind_sum) = {
|
|
// Alice gets 2 of her pre-existing outputs to send 5 coins to Bob, they
|
|
// become inputs in the new transaction
|
|
let (in1, in2) = (input(4, key_id1), input(3, key_id2));
|
|
|
|
// Alice builds her transaction, with change, which also produces the sum
|
|
// of blinding factors before they're obscured.
|
|
let tx = Transaction::empty()
|
|
.with_kernel(TxKernel::with_features(KernelFeatures::Plain { fee: 2 }));
|
|
let (tx, sum) =
|
|
build::partial_transaction(tx, vec![in1, in2, output(1, key_id3)], &keychain, &builder)
|
|
.unwrap();
|
|
|
|
(tx, sum)
|
|
};
|
|
|
|
// From now on, Bob only has the obscured transaction and the sum of
|
|
// blinding factors. He adds his output, finalizes the transaction so it's
|
|
// ready for broadcast.
|
|
let tx_final = build::transaction(
|
|
KernelFeatures::Plain { fee: 2 },
|
|
vec![
|
|
initial_tx(tx_alice),
|
|
with_excess(blind_sum),
|
|
output(4, key_id4),
|
|
],
|
|
&keychain,
|
|
&builder,
|
|
)
|
|
.unwrap();
|
|
|
|
tx_final
|
|
.validate(Weighting::AsTransaction, verifier_cache())
|
|
.unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn reward_empty_block() {
|
|
test_setup();
|
|
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
|
|
let previous_header = BlockHeader::default();
|
|
|
|
let b = new_block(vec![], &keychain, &builder, &previous_header, &key_id);
|
|
|
|
b.cut_through()
|
|
.unwrap()
|
|
.validate(&BlindingFactor::zero(), verifier_cache())
|
|
.unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn reward_with_tx_block() {
|
|
test_setup();
|
|
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
|
|
let vc = verifier_cache();
|
|
|
|
let mut tx1 = tx2i1o();
|
|
tx1.validate(Weighting::AsTransaction, vc.clone()).unwrap();
|
|
|
|
let previous_header = BlockHeader::default();
|
|
|
|
let block = new_block(
|
|
vec![&mut tx1],
|
|
&keychain,
|
|
&builder,
|
|
&previous_header,
|
|
&key_id,
|
|
);
|
|
block
|
|
.cut_through()
|
|
.unwrap()
|
|
.validate(&BlindingFactor::zero(), vc.clone())
|
|
.unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn simple_block() {
|
|
test_setup();
|
|
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
|
|
let vc = verifier_cache();
|
|
|
|
let mut tx1 = tx2i1o();
|
|
let mut tx2 = tx1i1o();
|
|
|
|
let previous_header = BlockHeader::default();
|
|
let b = new_block(
|
|
vec![&mut tx1, &mut tx2],
|
|
&keychain,
|
|
&builder,
|
|
&previous_header,
|
|
&key_id,
|
|
);
|
|
|
|
b.validate(&BlindingFactor::zero(), vc.clone()).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_block_with_timelocked_tx() {
|
|
test_setup();
|
|
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
|
|
let builder = ProofBuilder::new(&keychain);
|
|
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
|
|
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
|
|
|
|
let vc = verifier_cache();
|
|
|
|
// first check we can add a timelocked tx where lock height matches current
|
|
// block height and that the resulting block is valid
|
|
let tx1 = build::transaction(
|
|
KernelFeatures::HeightLocked {
|
|
fee: 2,
|
|
lock_height: 1,
|
|
},
|
|
vec![input(5, key_id1.clone()), output(3, key_id2.clone())],
|
|
&keychain,
|
|
&builder,
|
|
)
|
|
.unwrap();
|
|
|
|
let previous_header = BlockHeader::default();
|
|
|
|
let b = new_block(
|
|
vec![&tx1],
|
|
&keychain,
|
|
&builder,
|
|
&previous_header,
|
|
&key_id3.clone(),
|
|
);
|
|
b.validate(&BlindingFactor::zero(), vc.clone()).unwrap();
|
|
|
|
// now try adding a timelocked tx where lock height is greater than current
|
|
// block height
|
|
let tx1 = build::transaction(
|
|
KernelFeatures::HeightLocked {
|
|
fee: 2,
|
|
lock_height: 2,
|
|
},
|
|
vec![input(5, key_id1), output(3, key_id2)],
|
|
&keychain,
|
|
&builder,
|
|
)
|
|
.unwrap();
|
|
|
|
let previous_header = BlockHeader::default();
|
|
let b = new_block(vec![&tx1], &keychain, &builder, &previous_header, &key_id3);
|
|
|
|
match b.validate(&BlindingFactor::zero(), vc.clone()) {
|
|
Err(KernelLockHeight(height)) => {
|
|
assert_eq!(height, 2);
|
|
}
|
|
_ => panic!("expecting KernelLockHeight error here"),
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_verify_1i1o_sig() {
|
|
test_setup();
|
|
let tx = tx1i1o();
|
|
tx.validate(Weighting::AsTransaction, verifier_cache())
|
|
.unwrap();
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_verify_2i1o_sig() {
|
|
test_setup();
|
|
let tx = tx2i1o();
|
|
tx.validate(Weighting::AsTransaction, verifier_cache())
|
|
.unwrap();
|
|
}
|