grin/store/src/pmmr.rs
Antioch Peverell fffee377dd
Fix 2nd compact (#1143)
* add failing test to cover case where we compact
an already compacted data file

* fix the logic for pruning the data file
2018-06-06 22:46:21 +01:00

410 lines
12 KiB
Rust

// Copyright 2018 The Grin Developers
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of the persistent Backend for the prunable MMR tree.
use std::fs;
use std::io;
use std::marker;
use core::core::hash::Hash;
use core::core::pmmr::{self, family, Backend};
use core::ser;
use core::ser::PMMRable;
use types::*;
use util::LOGGER;
const PMMR_HASH_FILE: &'static str = "pmmr_hash.bin";
const PMMR_DATA_FILE: &'static str = "pmmr_data.bin";
const PMMR_RM_LOG_FILE: &'static str = "pmmr_rm_log.bin";
const PMMR_PRUNED_FILE: &'static str = "pmmr_pruned.bin";
/// Maximum number of nodes in the remove log before it gets flushed
pub const RM_LOG_MAX_NODES: usize = 10_000;
/// PMMR persistent backend implementation. Relies on multiple facilities to
/// handle writing, reading and pruning.
///
/// * A main storage file appends Hash instances as they come. This
/// AppendOnlyFile is also backed by a mmap for reads.
/// * An in-memory backend buffers the latest batch of writes to ensure the
/// PMMR can always read recent values even if they haven't been flushed to
/// disk yet.
/// * A remove log tracks the positions that need to be pruned from the
/// main storage file.
pub struct PMMRBackend<T>
where
T: PMMRable,
{
data_dir: String,
hash_file: AppendOnlyFile,
data_file: AppendOnlyFile,
rm_log: RemoveLog,
pruned_nodes: pmmr::PruneList,
_marker: marker::PhantomData<T>,
}
impl<T> Backend<T> for PMMRBackend<T>
where
T: PMMRable + ::std::fmt::Debug,
{
/// Append the provided Hashes to the backend storage.
#[allow(unused_variables)]
fn append(&mut self, position: u64, data: Vec<(Hash, Option<T>)>) -> Result<(), String> {
for d in data {
self.hash_file.append(&mut ser::ser_vec(&d.0).unwrap());
if let Some(elem) = d.1 {
self.data_file.append(&mut ser::ser_vec(&elem).unwrap());
}
}
Ok(())
}
fn get_from_file(&self, position: u64) -> Option<Hash> {
let shift = self.pruned_nodes.get_shift(position);
if let None = shift {
return None;
}
// Read PMMR
// The MMR starts at 1, our binary backend starts at 0
let pos = position - 1;
// Must be on disk, doing a read at the correct position
let hash_record_len = 32;
let file_offset = ((pos - shift.unwrap()) as usize) * hash_record_len;
let data = self.hash_file.read(file_offset, hash_record_len);
match ser::deserialize(&mut &data[..]) {
Ok(h) => Some(h),
Err(e) => {
error!(
LOGGER,
"Corrupted storage, could not read an entry from hash store: {:?}", e
);
return None;
}
}
}
fn get_data_from_file(&self, position: u64) -> Option<T> {
let shift = self.pruned_nodes.get_leaf_shift(position);
if let None = shift {
return None;
}
let pos = pmmr::n_leaves(position) - 1;
// Must be on disk, doing a read at the correct position
let record_len = T::len();
let file_offset = ((pos - shift.unwrap()) as usize) * record_len;
let data = self.data_file.read(file_offset, record_len);
match ser::deserialize(&mut &data[..]) {
Ok(h) => Some(h),
Err(e) => {
error!(
LOGGER,
"Corrupted storage, could not read an entry from data store: {:?}", e
);
return None;
}
}
}
/// Get the hash at pos.
/// Return None if it has been removed.
fn get_hash(&self, pos: u64) -> Option<(Hash)> {
// Check if this position has been pruned in the remove log...
if self.rm_log.includes(pos) {
None
} else {
self.get_from_file(pos)
}
}
/// Get the data at pos.
/// Return None if it has been removed or if pos is not a leaf node.
fn get_data(&self, pos: u64) -> Option<(T)> {
if self.rm_log.includes(pos) {
None
} else if !pmmr::is_leaf(pos) {
None
} else {
self.get_data_from_file(pos)
}
}
/// Rewind the PMMR backend to the given position.
/// Use the index to rewind the rm_log correctly (based on block height).
fn rewind(&mut self, position: u64, index: u32) -> Result<(), String> {
// Rewind the rm_log based on index (block height)
self.rm_log
.rewind(index)
.map_err(|e| format!("Could not truncate remove log: {}", e))?;
// Rewind the hash file accounting for pruned/compacted pos
let shift = self.pruned_nodes.get_shift(position).unwrap_or(0);
let record_len = 32 as u64;
let file_pos = (position - shift) * record_len;
self.hash_file.rewind(file_pos);
// Rewind the data file accounting for pruned/compacted pos
let leaf_shift = self.pruned_nodes.get_leaf_shift(position).unwrap_or(0);
let flatfile_pos = pmmr::n_leaves(position);
let record_len = T::len() as u64;
let file_pos = (flatfile_pos - leaf_shift) * record_len;
self.data_file.rewind(file_pos);
Ok(())
}
/// Remove Hashes by insertion position
fn remove(&mut self, positions: Vec<u64>, index: u32) -> Result<(), String> {
self.rm_log
.append(positions, index)
.map_err(|e| format!("Could not write to log storage, disk full? {:?}", e))
}
/// Return data file path
fn get_data_file_path(&self) -> String {
self.data_file.path()
}
fn dump_stats(&self) {
debug!(
LOGGER,
"pmmr backend: unpruned: {}, hashes: {}, data: {}, rm_log: {}, prune_list: {}",
self.unpruned_size().unwrap_or(0),
self.hash_size().unwrap_or(0),
self.data_size().unwrap_or(0),
self.rm_log.removed.len(),
self.pruned_nodes.pruned_nodes.len(),
);
}
}
impl<T> PMMRBackend<T>
where
T: PMMRable + ::std::fmt::Debug,
{
/// Instantiates a new PMMR backend.
/// Use the provided dir to store its files.
pub fn new(data_dir: String) -> io::Result<PMMRBackend<T>> {
let prune_list = read_ordered_vec(format!("{}/{}", data_dir, PMMR_PRUNED_FILE), 8)?;
let pruned_nodes = pmmr::PruneList {
pruned_nodes: prune_list,
};
let rm_log = RemoveLog::open(format!("{}/{}", data_dir, PMMR_RM_LOG_FILE))?;
let hash_file = AppendOnlyFile::open(format!("{}/{}", data_dir, PMMR_HASH_FILE))?;
let data_file = AppendOnlyFile::open(format!("{}/{}", data_dir, PMMR_DATA_FILE))?;
Ok(PMMRBackend {
data_dir,
hash_file,
data_file,
rm_log,
pruned_nodes,
_marker: marker::PhantomData,
})
}
/// Number of elements in the PMMR stored by this backend. Only produces the
/// fully sync'd size.
pub fn unpruned_size(&self) -> io::Result<u64> {
let total_shift = self.pruned_nodes.get_shift(::std::u64::MAX).unwrap();
let record_len = 32;
let sz = self.hash_file.size()?;
Ok(sz / record_len + total_shift)
}
/// Number of elements in the underlying stored data. Extremely dependent on
/// pruning and compaction.
pub fn data_size(&self) -> io::Result<u64> {
let record_len = T::len() as u64;
self.data_file.size().map(|sz| sz / record_len)
}
/// Size of the underlying hashed data. Extremely dependent on pruning
/// and compaction.
pub fn hash_size(&self) -> io::Result<u64> {
self.hash_file.size().map(|sz| sz / 32)
}
/// Syncs all files to disk. A call to sync is required to ensure all the
/// data has been successfully written to disk.
pub fn sync(&mut self) -> io::Result<()> {
if let Err(e) = self.hash_file.flush() {
return Err(io::Error::new(
io::ErrorKind::Interrupted,
format!("Could not write to log hash storage, disk full? {:?}", e),
));
}
if let Err(e) = self.data_file.flush() {
return Err(io::Error::new(
io::ErrorKind::Interrupted,
format!("Could not write to log data storage, disk full? {:?}", e),
));
}
self.rm_log.flush()?;
Ok(())
}
/// Discard the current, non synced state of the backend.
pub fn discard(&mut self) {
self.hash_file.discard();
self.rm_log.discard();
self.data_file.discard();
}
/// Return the data file path
pub fn data_file_path(&self) -> String {
self.get_data_file_path()
}
/// Checks the length of the remove log to see if it should get compacted.
/// If so, the remove log is flushed into the pruned list, which itself gets
/// saved, and the hash and data files are rewritten, cutting the removed
/// data.
///
/// If a max_len strictly greater than 0 is provided, the value will be used
/// to decide whether the remove log has reached its maximum length,
/// otherwise the RM_LOG_MAX_NODES default value is used.
///
/// A cutoff limits compaction on recent data. Provided as an indexed value
/// on pruned data (practically a block height), it forces compaction to
/// ignore any prunable data beyond the cutoff. This is used to enforce
/// a horizon after which the local node should have all the data to allow
/// rewinding.
pub fn check_compact<P>(
&mut self,
max_len: usize,
cutoff_index: u32,
prune_cb: P,
) -> io::Result<bool>
where
P: Fn(&[u8]),
{
if !(max_len > 0 && self.rm_log.len() >= max_len
|| max_len == 0 && self.rm_log.len() > RM_LOG_MAX_NODES)
{
return Ok(false);
}
// Paths for tmp hash and data files.
let tmp_prune_file_hash = format!("{}/{}.hashprune", self.data_dir, PMMR_HASH_FILE);
let tmp_prune_file_data = format!("{}/{}.dataprune", self.data_dir, PMMR_DATA_FILE);
// Pos we want to get rid of.
// Filtered by cutoff index.
let rm_pre_cutoff = self.rm_log.removed_pre_cutoff(cutoff_index);
// Filtered to exclude the subtree "roots".
let pos_to_rm = removed_excl_roots(rm_pre_cutoff.clone());
// Filtered for leaves only.
let leaf_pos_to_rm = removed_leaves(pos_to_rm.clone());
// 1. Save compact copy of the hash file, skipping removed data.
{
let record_len = 32;
let off_to_rm = map_vec!(pos_to_rm, |&pos| {
let shift = self.pruned_nodes.get_shift(pos).unwrap();
(pos - 1 - shift) * record_len
});
self.hash_file.save_prune(
tmp_prune_file_hash.clone(),
off_to_rm,
record_len,
&prune_noop,
)?;
}
// 2. Save compact copy of the data file, skipping removed leaves.
{
let record_len = T::len() as u64;
let off_to_rm = map_vec!(leaf_pos_to_rm, |pos| {
let flat_pos = pmmr::n_leaves(*pos);
let shift = self.pruned_nodes.get_leaf_shift(*pos).unwrap();
(flat_pos - 1 - shift) * record_len
});
self.data_file.save_prune(
tmp_prune_file_data.clone(),
off_to_rm,
record_len,
prune_cb,
)?;
}
// 3. Update the prune list and save it in place.
{
for &pos in &rm_pre_cutoff {
self.pruned_nodes.add(pos);
}
// TODO - we can get rid of leaves in the prunelist here (and things still work)
// self.pruned_nodes.pruned_nodes.retain(|&x| !pmmr::is_leaf(x));
write_vec(
format!("{}/{}", self.data_dir, PMMR_PRUNED_FILE),
&self.pruned_nodes.pruned_nodes,
)?;
}
// 4. Rename the compact copy of hash file and reopen it.
fs::rename(
tmp_prune_file_hash.clone(),
format!("{}/{}", self.data_dir, PMMR_HASH_FILE),
)?;
self.hash_file = AppendOnlyFile::open(format!("{}/{}", self.data_dir, PMMR_HASH_FILE))?;
// 5. Rename the compact copy of the data file and reopen it.
fs::rename(
tmp_prune_file_data.clone(),
format!("{}/{}", self.data_dir, PMMR_DATA_FILE),
)?;
self.data_file = AppendOnlyFile::open(format!("{}/{}", self.data_dir, PMMR_DATA_FILE))?;
// 6. Truncate the rm log based on pos removed.
// Excluding roots which remain in rm log.
self.rm_log
.removed
.retain(|&(pos, _)| !pos_to_rm.binary_search(&&pos).is_ok());
self.rm_log.flush()?;
Ok(true)
}
}
/// Filter remove list to exclude roots.
/// We want to keep roots around so we have hashes for Merkle proofs.
fn removed_excl_roots(removed: Vec<u64>) -> Vec<u64> {
removed
.iter()
.filter(|&pos| {
let (parent_pos, _) = family(*pos);
removed.binary_search(&parent_pos).is_ok()
})
.cloned()
.collect()
}
/// Filter remove list to only include leaf positions.
fn removed_leaves(removed: Vec<u64>) -> Vec<u64> {
removed
.iter()
.filter(|&pos| pmmr::is_leaf(*pos))
.cloned()
.collect()
}