grin/p2p/src/msg.rs
Ignotus Peverell 362fbcf90f
Proper p2p remote address detection when accepting conn
A receiving peer trusts the address advertised by a client.
However as we do not have external address detection (and there is
generally no very good way to do that), the address detected by
a peer is the loopback, which is useless. So we attempt to detect
these cases and use the IP detected by the TCP connection while
keeping the advertised port.
2017-11-01 18:56:59 -04:00

481 lines
13 KiB
Rust

// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Message types that transit over the network and related serialization code.
use std::net::{Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6};
use num::FromPrimitive;
use futures::future::{ok, Future};
use tokio_core::net::TcpStream;
use tokio_io::io::{read_exact, write_all};
use core::consensus::MAX_MSG_LEN;
use core::core::BlockHeader;
use core::core::hash::Hash;
use core::core::target::Difficulty;
use core::ser::{self, Readable, Reader, Writeable, Writer};
use types::*;
/// Current latest version of the protocol
pub const PROTOCOL_VERSION: u32 = 1;
/// Grin's user agent with current version (TODO externalize)
pub const USER_AGENT: &'static str = "MW/Grin 0.1";
/// Magic number expected in the header of every message
const MAGIC: [u8; 2] = [0x1e, 0xc5];
/// Size in bytes of a message header
pub const HEADER_LEN: u64 = 11;
/// Codes for each error that can be produced reading a message.
#[allow(dead_code)]
pub enum ErrCodes {
UnsupportedVersion = 100,
}
/// Types of messages
enum_from_primitive! {
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Type {
Error,
Hand,
Shake,
Ping,
Pong,
GetPeerAddrs,
PeerAddrs,
GetHeaders,
Headers,
GetBlock,
Block,
Transaction,
}
}
/// Future combinator to read any message where the body is a Readable. Reads
/// the header first, handles its validation and then reads the Readable body,
/// allocating buffers of the right size.
pub fn read_msg<T>(conn: TcpStream) -> Box<Future<Item = (TcpStream, T), Error = Error>>
where
T: Readable + 'static,
{
let read_header = read_exact(conn, vec![0u8; HEADER_LEN as usize])
.from_err()
.and_then(|(reader, buf)| {
let header = try!(ser::deserialize::<MsgHeader>(&mut &buf[..]));
if header.msg_len > MAX_MSG_LEN {
// TODO add additional restrictions on a per-message-type basis to avoid 20MB
// pings
return Err(Error::Serialization(ser::Error::TooLargeReadErr));
}
Ok((reader, header))
});
let read_msg = read_header
.and_then(|(reader, header)| {
read_exact(reader, vec![0u8; header.msg_len as usize]).from_err()
})
.and_then(|(reader, buf)| {
let body = try!(ser::deserialize(&mut &buf[..]));
Ok((reader, body))
});
Box::new(read_msg)
}
/// Future combinator to write a full message from a Writeable payload.
/// Serializes the payload first and then sends the message header and that
/// payload.
pub fn write_msg<T>(
conn: TcpStream,
msg: T,
msg_type: Type,
) -> Box<Future<Item = TcpStream, Error = Error>>
where
T: Writeable + 'static,
{
let write_msg = ok((conn)).and_then(move |conn| {
// prepare the body first so we know its serialized length
let mut body_buf = vec![];
ser::serialize(&mut body_buf, &msg).unwrap();
// build and serialize the header using the body size
let mut header_buf = vec![];
let blen = body_buf.len() as u64;
ser::serialize(&mut header_buf, &MsgHeader::new(msg_type, blen)).unwrap();
// send the whole thing
write_all(conn, header_buf)
.and_then(|(conn, _)| write_all(conn, body_buf))
.map(|(conn, _)| conn)
.from_err()
});
Box::new(write_msg)
}
/// Header of any protocol message, used to identify incoming messages.
pub struct MsgHeader {
magic: [u8; 2],
/// Type of the message.
pub msg_type: Type,
/// Tota length of the message in bytes.
pub msg_len: u64,
}
impl MsgHeader {
/// Creates a new message header.
pub fn new(msg_type: Type, len: u64) -> MsgHeader {
MsgHeader {
magic: MAGIC,
msg_type: msg_type,
msg_len: len,
}
}
/// Serialized length of the header in bytes
pub fn serialized_len(&self) -> u64 {
HEADER_LEN
}
}
impl Writeable for MsgHeader {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(
writer,
[write_u8, self.magic[0]],
[write_u8, self.magic[1]],
[write_u8, self.msg_type as u8],
[write_u64, self.msg_len]
);
Ok(())
}
}
impl Readable for MsgHeader {
fn read(reader: &mut Reader) -> Result<MsgHeader, ser::Error> {
try!(reader.expect_u8(MAGIC[0]));
try!(reader.expect_u8(MAGIC[1]));
let (t, len) = ser_multiread!(reader, read_u8, read_u64);
match Type::from_u8(t) {
Some(ty) => Ok(MsgHeader {
magic: MAGIC,
msg_type: ty,
msg_len: len,
}),
None => Err(ser::Error::CorruptedData),
}
}
}
/// First part of a handshake, sender advertises its version and
/// characteristics.
pub struct Hand {
/// protocol version of the sender
pub version: u32,
/// capabilities of the sender
pub capabilities: Capabilities,
/// randomly generated for each handshake, helps detect self
pub nonce: u64,
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// network address of the sender
pub sender_addr: SockAddr,
/// network address of the receiver
pub receiver_addr: SockAddr,
/// name of version of the software
pub user_agent: String,
}
impl Writeable for Hand {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(
writer,
[write_u32, self.version],
[write_u32, self.capabilities.bits()],
[write_u64, self.nonce]
);
self.total_difficulty.write(writer).unwrap();
self.sender_addr.write(writer).unwrap();
self.receiver_addr.write(writer).unwrap();
writer.write_bytes(&self.user_agent)
}
}
impl Readable for Hand {
fn read(reader: &mut Reader) -> Result<Hand, ser::Error> {
let (version, capab, nonce) = ser_multiread!(reader, read_u32, read_u32, read_u64);
let total_diff = try!(Difficulty::read(reader));
let sender_addr = try!(SockAddr::read(reader));
let receiver_addr = try!(SockAddr::read(reader));
let ua = try!(reader.read_vec());
let user_agent = try!(String::from_utf8(ua).map_err(|_| ser::Error::CorruptedData));
let capabilities = try!(Capabilities::from_bits(capab).ok_or(ser::Error::CorruptedData,));
Ok(Hand {
version: version,
capabilities: capabilities,
nonce: nonce,
total_difficulty: total_diff,
sender_addr: sender_addr,
receiver_addr: receiver_addr,
user_agent: user_agent,
})
}
}
/// Second part of a handshake, receiver of the first part replies with its own
/// version and characteristics.
pub struct Shake {
/// sender version
pub version: u32,
/// sender capabilities
pub capabilities: Capabilities,
/// total difficulty accumulated by the sender, used to check whether sync
/// may be needed
pub total_difficulty: Difficulty,
/// name of version of the software
pub user_agent: String,
}
impl Writeable for Shake {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(
writer,
[write_u32, self.version],
[write_u32, self.capabilities.bits()]
);
self.total_difficulty.write(writer).unwrap();
writer.write_bytes(&self.user_agent).unwrap();
Ok(())
}
}
impl Readable for Shake {
fn read(reader: &mut Reader) -> Result<Shake, ser::Error> {
let (version, capab) = ser_multiread!(reader, read_u32, read_u32);
let total_diff = try!(Difficulty::read(reader));
let ua = try!(reader.read_vec());
let user_agent = try!(String::from_utf8(ua).map_err(|_| ser::Error::CorruptedData));
let capabilities = try!(Capabilities::from_bits(capab).ok_or(ser::Error::CorruptedData,));
Ok(Shake {
version: version,
capabilities: capabilities,
total_difficulty: total_diff,
user_agent: user_agent,
})
}
}
/// Ask for other peers addresses, required for network discovery.
pub struct GetPeerAddrs {
/// Filters on the capabilities we'd like the peers to have
pub capabilities: Capabilities,
}
impl Writeable for GetPeerAddrs {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u32(self.capabilities.bits())
}
}
impl Readable for GetPeerAddrs {
fn read(reader: &mut Reader) -> Result<GetPeerAddrs, ser::Error> {
let capab = try!(reader.read_u32());
let capabilities = try!(Capabilities::from_bits(capab).ok_or(ser::Error::CorruptedData,));
Ok(GetPeerAddrs {
capabilities: capabilities,
})
}
}
/// Peer addresses we know of that are fresh enough, in response to
/// GetPeerAddrs.
pub struct PeerAddrs {
pub peers: Vec<SockAddr>,
}
impl Writeable for PeerAddrs {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
try!(writer.write_u32(self.peers.len() as u32));
for p in &self.peers {
p.write(writer).unwrap();
}
Ok(())
}
}
impl Readable for PeerAddrs {
fn read(reader: &mut Reader) -> Result<PeerAddrs, ser::Error> {
let peer_count = try!(reader.read_u32());
if peer_count > MAX_PEER_ADDRS {
return Err(ser::Error::TooLargeReadErr);
} else if peer_count == 0 {
return Ok(PeerAddrs { peers: vec![] });
}
// let peers = try_map_vec!([0..peer_count], |_| SockAddr::read(reader));
let mut peers = Vec::with_capacity(peer_count as usize);
for _ in 0..peer_count {
peers.push(SockAddr::read(reader)?);
}
Ok(PeerAddrs { peers: peers })
}
}
/// We found some issue in the communication, sending an error back, usually
/// followed by closing the connection.
pub struct PeerError {
/// error code
pub code: u32,
/// slightly more user friendly message
pub message: String,
}
impl Writeable for PeerError {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
ser_multiwrite!(writer, [write_u32, self.code], [write_bytes, &self.message]);
Ok(())
}
}
impl Readable for PeerError {
fn read(reader: &mut Reader) -> Result<PeerError, ser::Error> {
let (code, msg) = ser_multiread!(reader, read_u32, read_vec);
let message = try!(String::from_utf8(msg).map_err(|_| ser::Error::CorruptedData,));
Ok(PeerError {
code: code,
message: message,
})
}
}
/// Only necessary so we can implement Readable and Writeable. Rust disallows
/// implementing traits when both types are outside of this crate (which is the
/// case for SocketAddr and Readable/Writeable).
pub struct SockAddr(pub SocketAddr);
impl Writeable for SockAddr {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
match self.0 {
SocketAddr::V4(sav4) => {
ser_multiwrite!(
writer,
[write_u8, 0],
[write_fixed_bytes, &sav4.ip().octets().to_vec()],
[write_u16, sav4.port()]
);
}
SocketAddr::V6(sav6) => {
try!(writer.write_u8(1));
for seg in &sav6.ip().segments() {
try!(writer.write_u16(*seg));
}
try!(writer.write_u16(sav6.port()));
}
}
Ok(())
}
}
impl Readable for SockAddr {
fn read(reader: &mut Reader) -> Result<SockAddr, ser::Error> {
let v4_or_v6 = try!(reader.read_u8());
if v4_or_v6 == 0 {
let ip = try!(reader.read_fixed_bytes(4));
let port = try!(reader.read_u16());
Ok(SockAddr(SocketAddr::V4(SocketAddrV4::new(
Ipv4Addr::new(ip[0], ip[1], ip[2], ip[3]),
port,
))))
} else {
let ip = try_map_vec!([0..8], |_| reader.read_u16());
let port = try!(reader.read_u16());
Ok(SockAddr(SocketAddr::V6(SocketAddrV6::new(
Ipv6Addr::new(ip[0], ip[1], ip[2], ip[3], ip[4], ip[5], ip[6], ip[7]),
port,
0,
0,
))))
}
}
}
/// Serializable wrapper for the block locator.
pub struct Locator {
pub hashes: Vec<Hash>,
}
impl Writeable for Locator {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u8(self.hashes.len() as u8)?;
for h in &self.hashes {
h.write(writer)?
}
Ok(())
}
}
impl Readable for Locator {
fn read(reader: &mut Reader) -> Result<Locator, ser::Error> {
let len = reader.read_u8()?;
let mut hashes = Vec::with_capacity(len as usize);
for _ in 0..len {
hashes.push(Hash::read(reader)?);
}
Ok(Locator { hashes: hashes })
}
}
/// Serializable wrapper for a list of block headers.
pub struct Headers {
pub headers: Vec<BlockHeader>,
}
impl Writeable for Headers {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
writer.write_u16(self.headers.len() as u16)?;
for h in &self.headers {
h.write(writer)?
}
Ok(())
}
}
impl Readable for Headers {
fn read(reader: &mut Reader) -> Result<Headers, ser::Error> {
let len = reader.read_u16()?;
let mut headers = Vec::with_capacity(len as usize);
for _ in 0..len {
headers.push(BlockHeader::read(reader)?);
}
Ok(Headers { headers: headers })
}
}
/// Placeholder for messages like Ping and Pong that don't send anything but
/// the header.
pub struct Empty {}
impl Writeable for Empty {
fn write<W: Writer>(&self, _: &mut W) -> Result<(), ser::Error> {
Ok(())
}
}
impl Readable for Empty {
fn read(_: &mut Reader) -> Result<Empty, ser::Error> {
Ok(Empty {})
}
}