grin/core/tests/block.rs
2020-01-28 13:56:45 -05:00

604 lines
19 KiB
Rust

// Copyright 2020 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod common;
use crate::common::{new_block, tx1i2o, tx2i1o, txspend1i1o};
use crate::core::consensus::BLOCK_OUTPUT_WEIGHT;
use crate::core::core::block::Error;
use crate::core::core::hash::Hashed;
use crate::core::core::id::ShortIdentifiable;
use crate::core::core::transaction::{self, Transaction};
use crate::core::core::verifier_cache::{LruVerifierCache, VerifierCache};
use crate::core::core::Committed;
use crate::core::core::{
Block, BlockHeader, CompactBlock, HeaderVersion, KernelFeatures, OutputFeatures,
};
use crate::core::libtx::build::{self, input, output};
use crate::core::libtx::ProofBuilder;
use crate::core::{global, ser};
use chrono::Duration;
use grin_core as core;
use grin_core::global::ChainTypes;
use keychain::{BlindingFactor, ExtKeychain, Keychain};
use std::sync::Arc;
use util::secp;
use util::RwLock;
fn verifier_cache() -> Arc<RwLock<dyn VerifierCache>> {
Arc::new(RwLock::new(LruVerifierCache::new()))
}
#[test]
fn too_large_block() {
global::set_mining_mode(ChainTypes::AutomatedTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let max_out = global::max_block_weight() / BLOCK_OUTPUT_WEIGHT;
let mut pks = vec![];
for n in 0..(max_out + 1) {
pks.push(ExtKeychain::derive_key_id(1, n as u32, 0, 0, 0));
}
let mut parts = vec![];
for _ in 0..max_out {
parts.push(output(5, pks.pop().unwrap()));
}
parts.append(&mut vec![input(500000, pks.pop().unwrap())]);
let tx =
build::transaction(KernelFeatures::Plain { fee: 2 }, parts, &keychain, &builder).unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx], &keychain, &builder, &prev, &key_id);
assert!(b
.validate(&BlindingFactor::zero(), verifier_cache())
.is_err());
}
#[test]
// block with no inputs/outputs/kernels
// no fees, no reward, no coinbase
fn very_empty_block() {
let b = Block::with_header(BlockHeader::default());
assert_eq!(
b.verify_coinbase(),
Err(Error::Secp(secp::Error::IncorrectCommitSum))
);
}
#[test]
// builds a block with a tx spending another and check that cut_through occurred
fn block_with_cut_through() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let mut btx1 = tx2i1o();
let mut btx2 = build::transaction(
KernelFeatures::Plain { fee: 2 },
vec![input(7, key_id1), output(5, key_id2.clone())],
&keychain,
&builder,
)
.unwrap();
// spending tx2 - reuse key_id2
let mut btx3 = txspend1i1o(5, &keychain, &builder, key_id2.clone(), key_id3);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(
vec![&mut btx1, &mut btx2, &mut btx3],
&keychain,
&builder,
&prev,
&key_id,
);
// block should have been automatically compacted (including reward
// output) and should still be valid
b.validate(&BlindingFactor::zero(), verifier_cache())
.unwrap();
assert_eq!(b.inputs().len(), 3);
assert_eq!(b.outputs().len(), 3);
}
#[test]
fn empty_block_with_coinbase_is_valid() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &builder, &prev, &key_id);
assert_eq!(b.inputs().len(), 0);
assert_eq!(b.outputs().len(), 1);
assert_eq!(b.kernels().len(), 1);
let coinbase_outputs = b
.outputs()
.iter()
.filter(|out| out.is_coinbase())
.map(|o| o.clone())
.collect::<Vec<_>>();
assert_eq!(coinbase_outputs.len(), 1);
let coinbase_kernels = b
.kernels()
.iter()
.filter(|out| out.is_coinbase())
.map(|o| o.clone())
.collect::<Vec<_>>();
assert_eq!(coinbase_kernels.len(), 1);
// the block should be valid here (single coinbase output with corresponding
// txn kernel)
assert!(b
.validate(&BlindingFactor::zero(), verifier_cache())
.is_ok());
}
#[test]
// test that flipping the COINBASE flag on the output features
// invalidates the block and specifically it causes verify_coinbase to fail
// additionally verifying the merkle_inputs_outputs also fails
fn remove_coinbase_output_flag() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let mut b = new_block(vec![], &keychain, &builder, &prev, &key_id);
assert!(b.outputs()[0].is_coinbase());
b.outputs_mut()[0].features = OutputFeatures::Plain;
assert_eq!(b.verify_coinbase(), Err(Error::CoinbaseSumMismatch));
assert!(b
.verify_kernel_sums(b.header.overage(), b.header.total_kernel_offset())
.is_ok());
assert_eq!(
b.validate(&BlindingFactor::zero(), verifier_cache()),
Err(Error::CoinbaseSumMismatch)
);
}
#[test]
// test that flipping the COINBASE flag on the kernel features
// invalidates the block and specifically it causes verify_coinbase to fail
fn remove_coinbase_kernel_flag() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let mut b = new_block(vec![], &keychain, &builder, &prev, &key_id);
assert!(b.kernels()[0].is_coinbase());
b.kernels_mut()[0].features = KernelFeatures::Plain { fee: 0 };
// Flipping the coinbase flag results in kernels not summing correctly.
assert_eq!(
b.verify_coinbase(),
Err(Error::Secp(secp::Error::IncorrectCommitSum))
);
// Also results in the block no longer validating correctly
// because the message being signed on each tx kernel includes the kernel features.
assert_eq!(
b.validate(&BlindingFactor::zero(), verifier_cache()),
Err(Error::Transaction(transaction::Error::IncorrectSignature))
);
}
#[test]
fn serialize_deserialize_header_version() {
let mut vec1 = Vec::new();
ser::serialize_default(&mut vec1, &1_u16).expect("serialization failed");
let mut vec2 = Vec::new();
ser::serialize_default(&mut vec2, &HeaderVersion(1)).expect("serialization failed");
// Check that a header_version serializes to a
// single u16 value with no extraneous bytes wrapping it.
assert_eq!(vec1, vec2);
// Check we can successfully deserialize a header_version.
let version: HeaderVersion = ser::deserialize_default(&mut &vec2[..]).unwrap();
assert_eq!(version.0, 1)
}
#[test]
fn serialize_deserialize_block_header() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &builder, &prev, &key_id);
let header1 = b.header;
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &header1).expect("serialization failed");
let header2: BlockHeader = ser::deserialize_default(&mut &vec[..]).unwrap();
assert_eq!(header1.hash(), header2.hash());
assert_eq!(header1, header2);
}
#[test]
fn serialize_deserialize_block() {
let tx1 = tx1i2o();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &builder, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
let b2: Block = ser::deserialize_default(&mut &vec[..]).unwrap();
assert_eq!(b.hash(), b2.hash());
assert_eq!(b.header, b2.header);
assert_eq!(b.inputs(), b2.inputs());
assert_eq!(b.outputs(), b2.outputs());
assert_eq!(b.kernels(), b2.kernels());
}
#[test]
fn empty_block_serialized_size() {
global::set_mining_mode(ChainTypes::AutomatedTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &builder, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
assert_eq!(vec.len(), 1_096);
}
#[test]
fn block_single_tx_serialized_size() {
global::set_mining_mode(ChainTypes::AutomatedTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &builder, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
assert_eq!(vec.len(), 2_670);
}
#[test]
fn empty_compact_block_serialized_size() {
global::set_mining_mode(ChainTypes::AutomatedTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &cb).expect("serialization failed");
assert_eq!(vec.len(), 1_104);
}
#[test]
fn compact_block_single_tx_serialized_size() {
global::set_mining_mode(ChainTypes::AutomatedTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &cb).expect("serialization failed");
assert_eq!(vec.len(), 1_110);
}
#[test]
fn block_10_tx_serialized_size() {
global::set_mining_mode(global::ChainTypes::AutomatedTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let mut txs = vec![];
for _ in 0..10 {
let tx = tx1i2o();
txs.push(tx);
}
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(txs.iter().collect(), &keychain, &builder, &prev, &key_id);
// Default protocol version.
{
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
assert_eq!(vec.len(), 16_836);
}
// Explicit protocol version 1
{
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(1), &b).expect("serialization failed");
assert_eq!(vec.len(), 16_932);
}
// Explicit protocol version 2
{
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(2), &b).expect("serialization failed");
assert_eq!(vec.len(), 16_836);
}
}
#[test]
fn compact_block_10_tx_serialized_size() {
global::set_mining_mode(ChainTypes::AutomatedTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let mut txs = vec![];
for _ in 0..10 {
let tx = tx1i2o();
txs.push(tx);
}
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(txs.iter().collect(), &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &cb).expect("serialization failed");
assert_eq!(vec.len(), 1_164);
}
#[test]
fn compact_block_hash_with_nonce() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx], &keychain, &builder, &prev, &key_id);
let cb1: CompactBlock = b.clone().into();
let cb2: CompactBlock = b.clone().into();
// random nonce will not affect the hash of the compact block itself
// hash is based on header POW only
assert!(cb1.nonce != cb2.nonce);
assert_eq!(b.hash(), cb1.hash());
assert_eq!(cb1.hash(), cb2.hash());
assert!(cb1.kern_ids()[0] != cb2.kern_ids()[0]);
// check we can identify the specified kernel from the short_id
// correctly in both of the compact_blocks
assert_eq!(
cb1.kern_ids()[0],
tx.kernels()[0].short_id(&cb1.hash(), cb1.nonce)
);
assert_eq!(
cb2.kern_ids()[0],
tx.kernels()[0].short_id(&cb2.hash(), cb2.nonce)
);
}
#[test]
fn convert_block_to_compact_block() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.clone().into();
assert_eq!(cb.out_full().len(), 1);
assert_eq!(cb.kern_full().len(), 1);
assert_eq!(cb.kern_ids().len(), 1);
assert_eq!(
cb.kern_ids()[0],
b.kernels()
.iter()
.find(|x| !x.is_coinbase())
.unwrap()
.short_id(&cb.hash(), cb.nonce)
);
}
#[test]
fn hydrate_empty_compact_block() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.clone().into();
let hb = Block::hydrate_from(cb, vec![]).unwrap();
assert_eq!(hb.header, b.header);
assert_eq!(hb.outputs(), b.outputs());
assert_eq!(hb.kernels(), b.kernels());
}
#[test]
fn serialize_deserialize_compact_block() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &builder, &prev, &key_id);
let mut cb1: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &cb1).expect("serialization failed");
// After header serialization, timestamp will lose 'nanos' info, that's the designed behavior.
// To suppress 'nanos' difference caused assertion fail, we force b.header also lose 'nanos'.
let origin_ts = cb1.header.timestamp;
cb1.header.timestamp =
origin_ts - Duration::nanoseconds(origin_ts.timestamp_subsec_nanos() as i64);
let cb2: CompactBlock = ser::deserialize_default(&mut &vec[..]).unwrap();
assert_eq!(cb1.header, cb2.header);
assert_eq!(cb1.kern_ids(), cb2.kern_ids());
}
// Duplicate a range proof from a valid output into another of the same amount
#[test]
fn same_amount_outputs_copy_range_proof() {
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = keychain::ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = keychain::ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = keychain::ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let tx = build::transaction(
KernelFeatures::Plain { fee: 1 },
vec![input(7, key_id1), output(3, key_id2), output(3, key_id3)],
&keychain,
&builder,
)
.unwrap();
// now we reconstruct the transaction, swapping the rangeproofs so they
// have the wrong privkey
let ins = tx.inputs();
let mut outs = tx.outputs().clone();
let kernels = tx.kernels();
outs[0].proof = outs[1].proof;
let key_id = keychain::ExtKeychain::derive_key_id(1, 4, 0, 0, 0);
let prev = BlockHeader::default();
let b = new_block(
vec![&mut Transaction::new(
ins.clone(),
outs.clone(),
kernels.clone(),
)],
&keychain,
&builder,
&prev,
&key_id,
);
// block should have been automatically compacted (including reward
// output) and should still be valid
match b.validate(&BlindingFactor::zero(), verifier_cache()) {
Err(Error::Transaction(transaction::Error::Secp(secp::Error::InvalidRangeProof))) => {}
_ => panic!("Bad range proof should be invalid"),
}
}
// Swap a range proof with the right private key but wrong amount
#[test]
fn wrong_amount_range_proof() {
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = keychain::ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = keychain::ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = keychain::ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let tx1 = build::transaction(
KernelFeatures::Plain { fee: 1 },
vec![
input(7, key_id1.clone()),
output(3, key_id2.clone()),
output(3, key_id3.clone()),
],
&keychain,
&builder,
)
.unwrap();
let tx2 = build::transaction(
KernelFeatures::Plain { fee: 1 },
vec![input(7, key_id1), output(2, key_id2), output(4, key_id3)],
&keychain,
&builder,
)
.unwrap();
// we take the range proofs from tx2 into tx1 and rebuild the transaction
let ins = tx1.inputs();
let mut outs = tx1.outputs().clone();
let kernels = tx1.kernels();
outs[0].proof = tx2.outputs()[0].proof;
outs[1].proof = tx2.outputs()[1].proof;
let key_id = keychain::ExtKeychain::derive_key_id(1, 4, 0, 0, 0);
let prev = BlockHeader::default();
let b = new_block(
vec![&mut Transaction::new(
ins.clone(),
outs.clone(),
kernels.clone(),
)],
&keychain,
&builder,
&prev,
&key_id,
);
// block should have been automatically compacted (including reward
// output) and should still be valid
match b.validate(&BlindingFactor::zero(), verifier_cache()) {
Err(Error::Transaction(transaction::Error::Secp(secp::Error::InvalidRangeProof))) => {}
_ => panic!("Bad range proof should be invalid"),
}
}
#[test]
fn validate_header_proof() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &builder, &prev, &key_id);
let mut header_buf = vec![];
{
let mut writer = ser::BinWriter::default(&mut header_buf);
b.header.write_pre_pow(&mut writer).unwrap();
b.header.pow.write_pre_pow(&mut writer).unwrap();
}
let pre_pow = util::to_hex(header_buf);
let reconstructed = BlockHeader::from_pre_pow_and_proof(
pre_pow,
b.header.pow.nonce,
b.header.pow.proof.clone(),
)
.unwrap();
assert_eq!(reconstructed, b.header);
// assert invalid pre_pow returns error
assert!(BlockHeader::from_pre_pow_and_proof(
"0xaf1678".to_string(),
b.header.pow.nonce,
b.header.pow.proof.clone(),
)
.is_err());
}