grin/keychain/src/extkey.rs
Yeastplume 80887196a8
Restore wallet restore (#843)
* adding appropriate message to bulletproofs to allow for restore

* rustfmt

* should work, now test

* rustfmt

* fix to wallet restore, works now

* fix pool tests

* fix pool tests

* rustfmt
2018-03-23 10:13:57 +00:00

344 lines
9.4 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{error, fmt, num};
use std::cmp::min;
use serde::{de, ser};
use byteorder::{BigEndian, ByteOrder};
use blake2::blake2b::blake2b;
use util::secp;
use util::secp::Secp256k1;
use util::secp::key::{PublicKey, SecretKey};
use util;
// Size of an identifier in bytes
pub const IDENTIFIER_SIZE: usize = 10;
/// An ExtKey error
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum Error {
/// The size of the seed is invalid
InvalidSeedSize,
InvalidSliceSize,
InvalidExtendedKey,
Secp(secp::Error),
ParseIntError(num::ParseIntError),
}
impl From<secp::Error> for Error {
fn from(e: secp::Error) -> Error {
Error::Secp(e)
}
}
impl From<num::ParseIntError> for Error {
fn from(e: num::ParseIntError) -> Error {
Error::ParseIntError(e)
}
}
// Passthrough Debug to Display, since errors should be user-visible
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
f.write_str(error::Error::description(self))
}
}
impl error::Error for Error {
fn cause(&self) -> Option<&error::Error> {
None
}
fn description(&self) -> &str {
match *self {
Error::InvalidSeedSize => "keychain: seed isn't of size 128, 256 or 512",
// TODO change when ser. ext. size is fixed
Error::InvalidSliceSize => "keychain: serialized extended key must be of size 73",
Error::InvalidExtendedKey => "keychain: the given serialized extended key is invalid",
Error::Secp(_) => "keychain: secp error",
Error::ParseIntError(_) => "keychain: error parsing int",
}
}
}
#[derive(Clone, PartialEq, Eq, Ord, Hash, PartialOrd)]
pub struct Identifier([u8; IDENTIFIER_SIZE]);
impl ser::Serialize for Identifier {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
serializer.serialize_str(&self.to_hex())
}
}
impl<'de> de::Deserialize<'de> for Identifier {
fn deserialize<D>(deserializer: D) -> Result<Identifier, D::Error>
where
D: de::Deserializer<'de>,
{
deserializer.deserialize_str(IdentifierVisitor)
}
}
struct IdentifierVisitor;
impl<'de> de::Visitor<'de> for IdentifierVisitor {
type Value = Identifier;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("an identifier")
}
fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
where
E: de::Error,
{
let identifier = Identifier::from_hex(s).unwrap();
Ok(identifier)
}
}
impl Identifier {
pub fn zero() -> Identifier {
Identifier::from_bytes(&[0; IDENTIFIER_SIZE])
}
pub fn from_bytes(bytes: &[u8]) -> Identifier {
let mut identifier = [0; IDENTIFIER_SIZE];
for i in 0..min(IDENTIFIER_SIZE, bytes.len()) {
identifier[i] = bytes[i];
}
Identifier(identifier)
}
pub fn to_bytes(&self) -> [u8; IDENTIFIER_SIZE] {
self.0.clone()
}
pub fn from_pubkey(secp: &Secp256k1, pubkey: &PublicKey) -> Identifier {
let bytes = pubkey.serialize_vec(secp, true);
let identifier = blake2b(IDENTIFIER_SIZE, &[], &bytes[..]);
Identifier::from_bytes(&identifier.as_bytes())
}
/// Return the identifier of the secret key
/// which is the blake2b (10 byte) digest of the PublicKey
/// corresponding to the secret key provided.
fn from_secret_key(secp: &Secp256k1, key: &SecretKey) -> Result<Identifier, Error> {
let key_id = PublicKey::from_secret_key(secp, key)?;
Ok(Identifier::from_pubkey(secp, &key_id))
}
fn from_hex(hex: &str) -> Result<Identifier, Error> {
let bytes = util::from_hex(hex.to_string()).unwrap();
Ok(Identifier::from_bytes(&bytes))
}
pub fn to_hex(&self) -> String {
util::to_hex(self.0.to_vec())
}
}
impl AsRef<[u8]> for Identifier {
fn as_ref(&self) -> &[u8] {
&self.0.as_ref()
}
}
impl ::std::fmt::Debug for Identifier {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
try!(write!(f, "{}(", stringify!(Identifier)));
try!(write!(f, "{}", self.to_hex()));
write!(f, ")")
}
}
impl fmt::Display for Identifier {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.to_hex())
}
}
#[derive(Debug, Clone)]
pub struct ChildKey {
/// Child number of the key (n derivations)
pub n_child: u32,
/// Root key id
pub root_key_id: Identifier,
/// Key id
pub key_id: Identifier,
/// The private key
pub key: SecretKey,
}
/// An ExtendedKey is a secret key which can be used to derive new
/// secret keys to blind the commitment of a transaction output.
/// To be usable, a secret key should have an amount assigned to it,
/// but when the key is derived, the amount is not known and must be
/// given.
#[derive(Debug, Clone)]
pub struct ExtendedKey {
/// Child number of the extended key
pub n_child: u32,
/// Root key id
pub root_key_id: Identifier,
/// Key id
pub key_id: Identifier,
/// The secret key
pub key: SecretKey,
/// The chain code for the key derivation chain
pub chain_code: [u8; 32],
}
impl ExtendedKey {
/// Creates a new extended master key from a seed
pub fn from_seed(secp: &Secp256k1, seed: &[u8]) -> Result<ExtendedKey, Error> {
match seed.len() {
16 | 32 | 64 => (),
_ => return Err(Error::InvalidSeedSize),
}
let derived = blake2b(64, b"Grin/MW Seed", seed);
let slice = derived.as_bytes();
let key =
SecretKey::from_slice(&secp, &slice[0..32]).expect("Error deriving key (from_slice)");
let mut chain_code: [u8; 32] = Default::default();
(&mut chain_code).copy_from_slice(&slice[32..64]);
let key_id = Identifier::from_secret_key(secp, &key)?;
let ext_key = ExtendedKey {
n_child: 0,
root_key_id: key_id.clone(),
key_id: key_id.clone(),
// key and extended chain code for the key itself
key,
chain_code,
};
Ok(ext_key)
}
/// Derive a child key from this extended key
pub fn derive(&self, secp: &Secp256k1, n: u32) -> Result<ChildKey, Error> {
let mut n_bytes: [u8; 4] = [0; 4];
BigEndian::write_u32(&mut n_bytes, n);
let mut seed = self.key[..].to_vec();
seed.extend_from_slice(&n_bytes);
// only need a 32 byte digest here as we only need the bytes for the key itself
// we do not need additional bytes for a derived (and unused) chain code
let derived = blake2b(32, &self.chain_code[..], &seed[..]);
let mut key = SecretKey::from_slice(&secp, &derived.as_bytes()[..])
.expect("Error deriving key (from_slice)");
key.add_assign(secp, &self.key)
.expect("Error deriving key (add_assign)");
let key_id = Identifier::from_secret_key(secp, &key)?;
Ok(ChildKey {
n_child: n,
root_key_id: self.root_key_id.clone(),
key_id,
key,
})
}
}
#[cfg(test)]
mod test {
use serde_json;
use util::secp::Secp256k1;
use util::secp::key::SecretKey;
use super::{ExtendedKey, Identifier};
use util;
fn from_hex(hex_str: &str) -> Vec<u8> {
util::from_hex(hex_str.to_string()).unwrap()
}
#[test]
fn test_identifier_json_ser_deser() {
let hex = "942b6c0bd43bdcb24f3edfe7fadbc77054ecc4f2";
let identifier = Identifier::from_hex(hex).unwrap();
#[derive(Debug, Serialize, Deserialize, PartialEq)]
struct HasAnIdentifier {
identifier: Identifier,
}
let has_an_identifier = HasAnIdentifier { identifier };
let json = serde_json::to_string(&has_an_identifier).unwrap();
assert_eq!(json, "{\"identifier\":\"942b6c0bd43bdcb24f3e\"}");
let deserialized: HasAnIdentifier = serde_json::from_str(&json).unwrap();
assert_eq!(deserialized, has_an_identifier);
}
#[test]
fn extkey_from_seed() {
// TODO More test vectors
let s = Secp256k1::new();
let seed = from_hex("000102030405060708090a0b0c0d0e0f");
let extk = ExtendedKey::from_seed(&s, &seed.as_slice()).unwrap();
let sec = from_hex("2878a92133b0a7c2fbfb0bd4520ed2e55ea3fa2913200f05c30077d30b193480");
let secret_key = SecretKey::from_slice(&s, sec.as_slice()).unwrap();
let chain_code =
from_hex("3ad40dd836c5ce25dfcbdee5044d92cf6b65bd5475717fa7a56dd4a032cca7c0");
let identifier = from_hex("6f7c1a053ca54592e783");
let n_child = 0;
assert_eq!(extk.key, secret_key);
assert_eq!(extk.key_id, Identifier::from_bytes(identifier.as_slice()));
assert_eq!(
extk.root_key_id,
Identifier::from_bytes(identifier.as_slice())
);
assert_eq!(extk.chain_code, chain_code.as_slice());
assert_eq!(extk.n_child, n_child);
}
#[test]
fn extkey_derivation() {
let s = Secp256k1::new();
let seed = from_hex("000102030405060708090a0b0c0d0e0f");
let extk = ExtendedKey::from_seed(&s, &seed.as_slice()).unwrap();
let derived = extk.derive(&s, 0).unwrap();
let sec = from_hex("55f1a2b67ec58933bf954fdc721327afe486e8989af923c3ae298e45a84ef597");
let secret_key = SecretKey::from_slice(&s, sec.as_slice()).unwrap();
let root_key_id = from_hex("6f7c1a053ca54592e783");
let identifier = from_hex("8fa188b56cefe66be154");
let n_child = 0;
assert_eq!(derived.key, secret_key);
assert_eq!(
derived.key_id,
Identifier::from_bytes(identifier.as_slice())
);
assert_eq!(
derived.root_key_id,
Identifier::from_bytes(root_key_id.as_slice())
);
assert_eq!(derived.n_child, n_child);
}
}