mirror of
https://github.com/mimblewimble/grin.git
synced 2025-01-21 11:31:08 +03:00
d189770080
* Migrate main node store to LMDB In preparation to using LMDB as a wallet database, migrate the node db. There's no point in having 2 key-value stores. In addition LMDB provides a few advantages as a node db, namely a much faster build (compared to RocksDb), lesser dependencies and transactions. * Migrated p2p store to lmdb, stuff compiles * More fixes, chain tests starting to pass * Fixed txhashset rollback messing with block save and general batch delimitation. Chain tests passing. * rustfmt * LMDB max map size of 10MB isn't really workable. Half TB seems reasonable. * Fix wallet tests * Rather crucial commit was missing * rustfmt * Fixing new merged tests following lmdb changes * rustfmt * * Make txhashset validation read-only on fast sync to avoid having a really long open transaction. * Fix deadlock in new block processing, batch should always be created within a txhashset lock (when they interact). * Comment about batch and txhashset interlacing * Fix store tests to use batch * Externalize wallet config and seed * Converted direct read access to file outputs map to an iterator * Cleaned up and simplified wallet Backend trait: * No more direct mutable access to internal structures (HashMap) * Batch interface for all writes * Remove unneeded read wrapper (read_wallet) * rustfmt * First (incomplete) pass at wallet LMDB backend * Progressing on lmdb backent iml * Added batch impl for LMDB wallet backend. Pretty much done with it, but not sure how to deal with commit (owned). * rustfmt * Wrapping LMDB batch around a refcell to work around borrow rules * Compilation up to grin chain
223 lines
7.2 KiB
Rust
223 lines
7.2 KiB
Rust
// Copyright 2018 The Grin Developers
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
extern crate blake2_rfc as blake2;
|
|
extern crate grin_chain as chain;
|
|
extern crate grin_core as core;
|
|
extern crate grin_keychain as keychain;
|
|
extern crate grin_pool as pool;
|
|
extern crate grin_util as util;
|
|
extern crate grin_wallet as wallet;
|
|
|
|
extern crate rand;
|
|
extern crate time;
|
|
|
|
pub mod common;
|
|
|
|
use std::sync::{Arc, RwLock};
|
|
|
|
use chain::types::Tip;
|
|
use chain::{txhashset, ChainStore};
|
|
use common::{clean_output_dir, test_setup, test_source, test_transaction,
|
|
test_transaction_spending_coinbase, ChainAdapter};
|
|
use core::core::target::Difficulty;
|
|
use core::core::{transaction, Block, BlockHeader};
|
|
use keychain::{ExtKeychain, Keychain};
|
|
use wallet::libtx;
|
|
|
|
/// Test we can add some txs to the pool (both stempool and txpool).
|
|
#[test]
|
|
fn test_the_transaction_pool() {
|
|
let keychain: ExtKeychain = Keychain::from_random_seed().unwrap();
|
|
|
|
let db_root = ".grin_transaction_pool".to_string();
|
|
clean_output_dir(db_root.clone());
|
|
let chain = ChainAdapter::init(db_root.clone()).unwrap();
|
|
|
|
// Initialize the chain/txhashset with a few blocks,
|
|
// so we have a non-empty UTXO set.
|
|
let header = {
|
|
let height = 1;
|
|
let key_id = keychain.derive_key_id(height as u32).unwrap();
|
|
let reward = libtx::reward::output(&keychain, &key_id, 0, height).unwrap();
|
|
let block = Block::new(&BlockHeader::default(), vec![], Difficulty::one(), reward).unwrap();
|
|
|
|
let mut txhashset = chain.txhashset.write().unwrap();
|
|
let mut batch = chain.store.batch().unwrap();
|
|
txhashset::extending(&mut txhashset, &mut batch, |extension| {
|
|
extension.apply_block(&block)
|
|
}).unwrap();
|
|
|
|
let tip = Tip::from_block(&block.header);
|
|
batch.save_block_header(&block.header).unwrap();
|
|
batch.save_head(&tip).unwrap();
|
|
batch.commit().unwrap();
|
|
|
|
block.header
|
|
};
|
|
|
|
// Initialize a new pool with our chain adapter.
|
|
let pool = RwLock::new(test_setup(&Arc::new(chain.clone())));
|
|
|
|
// Now create tx to spend a coinbase, giving us some useful outputs for testing
|
|
// with.
|
|
let initial_tx = {
|
|
test_transaction_spending_coinbase(
|
|
&keychain,
|
|
&header,
|
|
vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400],
|
|
)
|
|
};
|
|
|
|
// Add this tx to the pool (stem=false, direct to txpool).
|
|
{
|
|
let mut write_pool = pool.write().unwrap();
|
|
write_pool
|
|
.add_to_pool(test_source(), initial_tx, false)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
}
|
|
|
|
// tx1 spends some outputs from the initial test tx.
|
|
let tx1 = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
|
|
// tx2 spends some outputs from both tx1 and the initial test tx.
|
|
let tx2 = test_transaction(&keychain, vec![499, 700], vec![498]);
|
|
|
|
// Take a write lock and add a couple of tx entries to the pool.
|
|
{
|
|
let mut write_pool = pool.write().unwrap();
|
|
|
|
// Check we have a single initial tx in the pool.
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
|
|
// First, add a simple tx to the pool in "stem" mode.
|
|
write_pool
|
|
.add_to_pool(test_source(), tx1.clone(), true)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
assert_eq!(write_pool.stempool.size(), 1);
|
|
|
|
// Add another tx spending outputs from the previous tx.
|
|
write_pool
|
|
.add_to_pool(test_source(), tx2.clone(), true)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
assert_eq!(write_pool.stempool.size(), 2);
|
|
}
|
|
|
|
// Test adding the exact same tx multiple times (same kernel signature).
|
|
// This will fail during tx aggregation due to duplicate outputs and duplicate
|
|
// kernels.
|
|
{
|
|
let mut write_pool = pool.write().unwrap();
|
|
assert!(
|
|
write_pool
|
|
.add_to_pool(test_source(), tx1.clone(), true)
|
|
.is_err()
|
|
);
|
|
}
|
|
|
|
// Test adding a duplicate tx with the same input and outputs (not the *same*
|
|
// tx).
|
|
{
|
|
let tx1a = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
|
|
let mut write_pool = pool.write().unwrap();
|
|
assert!(write_pool.add_to_pool(test_source(), tx1a, true).is_err());
|
|
}
|
|
|
|
// Test adding a tx attempting to spend a non-existent output.
|
|
{
|
|
let bad_tx = test_transaction(&keychain, vec![10_001], vec![10_000]);
|
|
let mut write_pool = pool.write().unwrap();
|
|
assert!(write_pool.add_to_pool(test_source(), bad_tx, true).is_err());
|
|
}
|
|
|
|
// Test adding a tx that would result in a duplicate output (conflicts with
|
|
// output from tx2). For reasons of security all outputs in the UTXO set must
|
|
// be unique. Otherwise spending one will almost certainly cause the other
|
|
// to be immediately stolen via a "replay" tx.
|
|
{
|
|
let tx = test_transaction(&keychain, vec![900], vec![498]);
|
|
let mut write_pool = pool.write().unwrap();
|
|
assert!(write_pool.add_to_pool(test_source(), tx, true).is_err());
|
|
}
|
|
|
|
// Confirm the tx pool correctly identifies an invalid tx (already spent).
|
|
{
|
|
let mut write_pool = pool.write().unwrap();
|
|
let tx3 = test_transaction(&keychain, vec![500], vec![497]);
|
|
assert!(write_pool.add_to_pool(test_source(), tx3, true).is_err());
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
assert_eq!(write_pool.stempool.size(), 2);
|
|
}
|
|
|
|
// Check we can take some entries from the stempool and "fluff" them into the
|
|
// txpool. This also exercises multi-kernel txs.
|
|
{
|
|
let mut write_pool = pool.write().unwrap();
|
|
let agg_tx = write_pool
|
|
.stempool
|
|
.aggregate_transaction()
|
|
.unwrap()
|
|
.unwrap();
|
|
assert_eq!(agg_tx.kernels.len(), 2);
|
|
write_pool
|
|
.add_to_pool(test_source(), agg_tx, false)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 2);
|
|
}
|
|
|
|
// Now check we can correctly deaggregate a multi-kernel tx based on current
|
|
// contents of the txpool.
|
|
// We will do this be adding a new tx to the pool
|
|
// that is a superset of a tx already in the pool.
|
|
{
|
|
let mut write_pool = pool.write().unwrap();
|
|
|
|
let tx4 = test_transaction(&keychain, vec![800], vec![799]);
|
|
// tx1 and tx2 are already in the txpool (in aggregated form)
|
|
// tx4 is the "new" part of this aggregated tx that we care about
|
|
let agg_tx = transaction::aggregate(vec![tx1.clone(), tx2.clone(), tx4]).unwrap();
|
|
write_pool
|
|
.add_to_pool(test_source(), agg_tx, false)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 3);
|
|
let entry = write_pool.txpool.entries.last().unwrap();
|
|
assert_eq!(entry.tx.kernels.len(), 1);
|
|
assert_eq!(entry.src.debug_name, "deagg");
|
|
}
|
|
|
|
// Check we cannot "double spend" an output spent in a previous block.
|
|
// We use the initial coinbase output here for convenience.
|
|
{
|
|
let mut write_pool = pool.write().unwrap();
|
|
|
|
let double_spend_tx =
|
|
{ test_transaction_spending_coinbase(&keychain, &header, vec![1000]) };
|
|
|
|
// check we cannot add a double spend to the stempool
|
|
assert!(
|
|
write_pool
|
|
.add_to_pool(test_source(), double_spend_tx.clone(), true)
|
|
.is_err()
|
|
);
|
|
|
|
// check we cannot add a double spend to the txpool
|
|
assert!(
|
|
write_pool
|
|
.add_to_pool(test_source(), double_spend_tx.clone(), false)
|
|
.is_err()
|
|
);
|
|
}
|
|
}
|