grin/store/src/sumtree.rs
2017-11-04 13:34:33 -04:00

550 lines
16 KiB
Rust

// Copyright 2017 The Grin Developers
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of the persistent Backend for the prunable MMR sum-tree.
use memmap;
use std::cmp;
use std::fs::{self, File, OpenOptions};
use std::io::{self, BufRead, BufReader, ErrorKind, Write};
use std::os::unix::io::AsRawFd;
use std::path::Path;
use std::io::Read;
#[cfg(any(target_os = "linux"))]
use libc::{ftruncate64, off64_t};
#[cfg(not(any(target_os = "linux", target_os = "android")))]
use libc::{ftruncate as ftruncate64, off_t as off64_t};
use core::core::pmmr::{self, Backend, HashSum, Summable, VecBackend};
use core::ser;
use util::LOGGER;
const PMMR_DATA_FILE: &'static str = "pmmr_dat.bin";
const PMMR_RM_LOG_FILE: &'static str = "pmmr_rm_log.bin";
const PMMR_PRUNED_FILE: &'static str = "pmmr_pruned.bin";
/// Maximum number of nodes in the remove log before it gets flushed
pub const RM_LOG_MAX_NODES: usize = 10000;
/// Wrapper for a file that can be read at any position (random read) but for
/// which writes are append only. Reads are backed by a memory map (mmap(2)),
/// relying on the operating system for fast access and caching. The memory
/// map is reallocated to expand it when new writes are flushed.
///
/// Despite being append-only, the file can still be pruned and truncated. The
/// former simply happens by rewriting it, ignoring some of the data. The
/// latter by truncating the underlying file and re-creating the mmap.
struct AppendOnlyFile {
path: String,
file: File,
mmap: Option<memmap::Mmap>,
}
impl AppendOnlyFile {
/// Open a file (existing or not) as append-only, backed by a mmap.
fn open(path: String) -> io::Result<AppendOnlyFile> {
let file = OpenOptions::new()
.read(true)
.append(true)
.create(true)
.open(path.clone())?;
let mut aof = AppendOnlyFile {
path: path.clone(),
file: file,
mmap: None,
};
if let Ok(sz) = aof.size() {
if sz > 0 {
aof.sync()?;
}
}
Ok(aof)
}
/// Append data to the file.
fn append(&mut self, buf: &[u8]) -> io::Result<()> {
self.file.write_all(buf)
}
/// Syncs all writes (fsync), reallocating the memory map to make the newly
/// written data accessible.
fn sync(&mut self) -> io::Result<()> {
self.file.sync_data()?;
self.mmap = Some(unsafe { memmap::Mmap::map(&self.file)? });
Ok(())
}
/// Read length bytes of data at offset from the file. Leverages the memory
/// map.
fn read(&self, offset: usize, length: usize) -> Vec<u8> {
if let None = self.mmap {
return vec![];
}
let mmap = self.mmap.as_ref().unwrap();
(&mmap[offset..(offset + length)]).to_vec()
}
/// Saves a copy of the current file content, skipping data at the provided
/// prune indices. The prune Vec must be ordered.
fn save_prune(&self, target: String, prune_offs: Vec<u64>, prune_len: u64) -> io::Result<()> {
let mut reader = File::open(self.path.clone())?;
let mut writer = File::create(target)?;
// align the buffer on prune_len to avoid misalignments
let mut buf = vec![0; (prune_len * 256) as usize];
let mut read = 0;
let mut prune_pos = 0;
loop {
// fill our buffer
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(()),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
} as u64;
// write the buffer, except if we prune offsets in the current span,
// in which case we skip
let mut buf_start = 0;
while prune_offs[prune_pos] >= read && prune_offs[prune_pos] < read + len {
let prune_at = prune_offs[prune_pos] as usize;
if prune_at != buf_start {
writer.write_all(&buf[buf_start..prune_at])?;
}
buf_start = prune_at + (prune_len as usize);
if prune_offs.len() > prune_pos + 1 {
prune_pos += 1;
} else {
break;
}
}
writer.write_all(&mut buf[buf_start..(len as usize)])?;
read += len;
}
}
/// Truncates the underlying file to the provided offset
fn truncate(&self, offs: u64) -> io::Result<()> {
let fd = self.file.as_raw_fd();
let res = unsafe { ftruncate64(fd, offs as off64_t) };
if res == -1 {
Err(io::Error::last_os_error())
} else {
Ok(())
}
}
/// Current size of the file in bytes.
fn size(&self) -> io::Result<u64> {
fs::metadata(&self.path).map(|md| md.len())
}
}
/// Log file fully cached in memory containing all positions that should be
/// eventually removed from the MMR append-only data file. Allows quick
/// checking of whether a piece of data has been marked for deletion. When the
/// log becomes too long, the MMR backend will actually remove chunks from the
/// MMR data file and truncate the remove log.
struct RemoveLog {
path: String,
// Ordered vector of MMR positions that should get eventually removed.
removed: Vec<(u64, u32)>,
// Holds positions temporarily until flush is called.
removed_tmp: Vec<(u64, u32)>,
}
impl RemoveLog {
/// Open the remove log file. The content of the file will be read in memory
/// for fast checking.
fn open(path: String) -> io::Result<RemoveLog> {
let removed = read_ordered_vec(path.clone())?;
Ok(RemoveLog {
path: path,
removed: removed,
removed_tmp: vec![],
})
}
/// Truncate and empties the remove log.
fn truncate(&mut self, last_offs: u32) -> io::Result<()> {
// simplifying assumption: we always remove older than what's in tmp
self.removed_tmp = vec![];
if last_offs == 0 {
self.removed = vec![];
} else {
self.removed = self.removed
.iter()
.filter(|&&(_, idx)| idx < last_offs)
.map(|x| *x)
.collect();
}
Ok(())
}
/// Append a set of new positions to the remove log. Both adds those
/// positions the ordered in-memory set and to the file.
fn append(&mut self, elmts: Vec<u64>, index: u32) -> io::Result<()> {
for elmt in elmts {
match self.removed_tmp.binary_search(&(elmt, index)) {
Ok(_) => continue,
Err(idx) => {
self.removed_tmp.insert(idx, (elmt, index));
}
}
}
Ok(())
}
/// Flush the positions to remove to file.
fn flush(&mut self) -> io::Result<()> {
let mut file = File::create(self.path.clone())?;
for elmt in &self.removed_tmp {
match self.removed.binary_search(&elmt) {
Ok(_) => continue,
Err(idx) => {
file.write_all(&ser::ser_vec(&elmt).unwrap()[..])?;
self.removed.insert(idx, *elmt);
}
}
}
self.removed_tmp = vec![];
file.sync_data()
}
/// Discard pending changes
fn discard(&mut self) {
self.removed_tmp = vec![];
}
/// Whether the remove log currently includes the provided position.
fn includes(&self, elmt: u64) -> bool {
include_tuple(&self.removed, elmt) || include_tuple(&self.removed_tmp, elmt)
}
/// Number of positions stored in the remove log.
fn len(&self) -> usize {
self.removed.len()
}
}
fn include_tuple(v: &Vec<(u64, u32)>, e: u64) -> bool {
if let Err(pos) = v.binary_search(&(e, 0)) {
if pos < v.len() && v[pos].0 == e {
return true;
}
}
false
}
/// PMMR persistent backend implementation. Relies on multiple facilities to
/// handle writing, reading and pruning.
///
/// * A main storage file appends HashSum instances as they come. This
/// AppendOnlyFile is also backed by a mmap for reads.
/// * An in-memory backend buffers the latest batch of writes to ensure the
/// PMMR can always read recent values even if they haven't been flushed to
/// disk yet.
/// * A remove log tracks the positions that need to be pruned from the
/// main storage file.
pub struct PMMRBackend<T>
where
T: Summable + Clone,
{
data_dir: String,
hashsum_file: AppendOnlyFile,
remove_log: RemoveLog,
pruned_nodes: pmmr::PruneList,
// buffers addition of new elements until they're fully written to disk
buffer: VecBackend<T>,
buffer_index: usize,
// whether a rewind occurred since last flush, the rewind position, index
// and buffer index are captured
rewind: Option<(u64, u32, usize)>,
}
impl<T> Backend<T> for PMMRBackend<T>
where
T: Summable + Clone,
{
/// Append the provided HashSums to the backend storage.
#[allow(unused_variables)]
fn append(&mut self, position: u64, data: Vec<HashSum<T>>) -> Result<(), String> {
self.buffer
.append(position - (self.buffer_index as u64), data.clone())?;
Ok(())
}
/// Get a HashSum by insertion position
fn get(&self, position: u64) -> Option<HashSum<T>> {
// First, check if it's in our temporary write buffer
let pos_sz = position as usize;
if pos_sz > self.buffer_index && pos_sz - 1 < self.buffer_index + self.buffer.len() {
return self.buffer.get((pos_sz - self.buffer_index) as u64);
}
// Second, check if this position has been pruned in the remove log
if self.remove_log.includes(position) {
return None;
}
// Third, check if it's in the pruned list or its offset
let shift = self.pruned_nodes.get_shift(position);
if let None = shift {
return None;
}
// The MMR starts at 1, our binary backend starts at 0
let pos = position - 1;
// Must be on disk, doing a read at the correct position
let record_len = 32 + T::sum_len();
let file_offset = ((pos - shift.unwrap()) as usize) * record_len;
let data = self.hashsum_file.read(file_offset, record_len);
match ser::deserialize(&mut &data[..]) {
Ok(hashsum) => Some(hashsum),
Err(e) => {
error!(
LOGGER,
"Corrupted storage, could not read an entry from sum tree store: {:?}",
e
);
None
}
}
}
fn rewind(&mut self, position: u64, index: u32) -> Result<(), String> {
assert!(self.buffer.len() == 0, "Rewind on non empty buffer.");
self.remove_log
.truncate(index)
.map_err(|e| format!("Could not truncate remove log: {}", e))?;
self.rewind = Some((position, index, self.buffer_index));
self.buffer_index = position as usize;
Ok(())
}
/// Remove HashSums by insertion position
fn remove(&mut self, positions: Vec<u64>, index: u32) -> Result<(), String> {
if self.buffer.used_size() > 0 {
for position in &positions {
let pos_sz = *position as usize;
if pos_sz > self.buffer_index && pos_sz - 1 < self.buffer_index + self.buffer.len()
{
self.buffer.remove(vec![*position], index).unwrap();
}
}
}
self.remove_log.append(positions, index).map_err(|e| {
format!("Could not write to log storage, disk full? {:?}", e)
})
}
}
impl<T> PMMRBackend<T>
where
T: Summable + Clone,
{
/// Instantiates a new PMMR backend that will use the provided directly to
/// store its files.
pub fn new(data_dir: String) -> io::Result<PMMRBackend<T>> {
let hs_file = AppendOnlyFile::open(format!("{}/{}", data_dir, PMMR_DATA_FILE))?;
let sz = hs_file.size()?;
let record_len = 32 + T::sum_len();
let rm_log = RemoveLog::open(format!("{}/{}", data_dir, PMMR_RM_LOG_FILE))?;
let prune_list = read_ordered_vec(format!("{}/{}", data_dir, PMMR_PRUNED_FILE))?;
Ok(PMMRBackend {
data_dir: data_dir,
hashsum_file: hs_file,
remove_log: rm_log,
buffer: VecBackend::new(),
buffer_index: (sz as usize) / record_len,
pruned_nodes: pmmr::PruneList {
pruned_nodes: prune_list,
},
rewind: None,
})
}
/// Total size of the PMMR stored by this backend. Only produces the fully
/// sync'd size.
pub fn unpruned_size(&self) -> io::Result<u64> {
let total_shift = self.pruned_nodes.get_shift(::std::u64::MAX).unwrap();
let record_len = 32 + T::sum_len() as u64;
let sz = self.hashsum_file.size()?;
Ok(sz / record_len + total_shift)
}
/// Syncs all files to disk. A call to sync is required to ensure all the
/// data has been successfully written to disk.
pub fn sync(&mut self) -> io::Result<()> {
// truncating the storage file if a rewind occurred
if let Some((pos, _, _)) = self.rewind {
let record_len = 32 + T::sum_len() as u64;
self.hashsum_file.truncate(pos * record_len)?;
}
for elem in &self.buffer.elems {
if let Some(ref hs) = *elem {
if let Err(e) = self.hashsum_file.append(&ser::ser_vec(&hs).unwrap()[..]) {
return Err(io::Error::new(
io::ErrorKind::Interrupted,
format!("Could not write to log storage, disk full? {:?}", e),
));
}
}
}
self.buffer_index = self.buffer_index + self.buffer.len();
self.buffer.clear();
self.remove_log.flush()?;
self.hashsum_file.sync()?;
self.rewind = None;
Ok(())
}
/// Discard the current, non synced state of the backend.
pub fn discard(&mut self) {
if let Some((_, _, bi)) = self.rewind {
self.buffer_index = bi;
}
self.buffer = VecBackend::new();
self.remove_log.discard();
self.rewind = None;
}
/// Checks the length of the remove log to see if it should get compacted.
/// If so, the remove log is flushed into the pruned list, which itself gets
/// saved, and the main hashsum data file is rewritten, cutting the removed
/// data.
///
/// If a max_len strictly greater than 0 is provided, the value will be used
/// to decide whether the remove log has reached its maximum length,
/// otherwise the RM_LOG_MAX_NODES default value is used.
///
/// TODO whatever is calling this should also clean up the commit to
/// position index in db
pub fn check_compact(&mut self, max_len: usize) -> io::Result<()> {
if !(max_len > 0 && self.remove_log.len() > max_len
|| max_len == 0 && self.remove_log.len() > RM_LOG_MAX_NODES)
{
return Ok(());
}
// 0. validate none of the nodes in the rm log are in the prune list (to
// avoid accidental double compaction)
for pos in &self.remove_log.removed[..] {
if let None = self.pruned_nodes.pruned_pos(pos.0) {
// TODO we likely can recover from this by directly jumping to 3
error!(
LOGGER,
"The remove log contains nodes that are already in the pruned \
list, a previous compaction likely failed."
);
return Ok(());
}
}
// 1. save hashsum file to a compact copy, skipping data that's in the
// remove list
let tmp_prune_file = format!("{}/{}.prune", self.data_dir, PMMR_DATA_FILE);
let record_len = (32 + T::sum_len()) as u64;
let to_rm = self.remove_log
.removed
.iter()
.map(|&(pos, _)| {
let shift = self.pruned_nodes.get_shift(pos);
(pos - 1 - shift.unwrap()) * record_len
})
.collect();
self.hashsum_file
.save_prune(tmp_prune_file.clone(), to_rm, record_len)?;
// 2. update the prune list and save it in place
for &(rm_pos, _) in &self.remove_log.removed[..] {
self.pruned_nodes.add(rm_pos);
}
write_vec(
format!("{}/{}", self.data_dir, PMMR_PRUNED_FILE),
&self.pruned_nodes.pruned_nodes,
)?;
// 3. move the compact copy to the hashsum file and re-open it
fs::rename(
tmp_prune_file.clone(),
format!("{}/{}", self.data_dir, PMMR_DATA_FILE),
)?;
self.hashsum_file = AppendOnlyFile::open(format!("{}/{}", self.data_dir, PMMR_DATA_FILE))?;
self.hashsum_file.sync()?;
// 4. truncate the rm log
self.remove_log.truncate(0)?;
self.remove_log.flush()?;
Ok(())
}
}
// Read an ordered vector of scalars from a file.
fn read_ordered_vec<T>(path: String) -> io::Result<Vec<T>>
where
T: ser::Readable + cmp::Ord,
{
let file_path = Path::new(&path);
let mut ovec = Vec::with_capacity(1000);
if file_path.exists() {
let mut file = BufReader::with_capacity(8 * 1000, File::open(path.clone())?);
loop {
// need a block to end mutable borrow before consume
let buf_len = {
let buf = file.fill_buf()?;
if buf.len() == 0 {
break;
}
let elmts_res: Result<Vec<T>, ser::Error> = ser::deserialize(&mut &buf[..]);
match elmts_res {
Ok(elmts) => for elmt in elmts {
if let Err(idx) = ovec.binary_search(&elmt) {
ovec.insert(idx, elmt);
}
},
Err(_) => {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
format!("Corrupted storage, could not read file at {}", path),
));
}
}
buf.len()
};
file.consume(buf_len);
}
}
Ok(ovec)
}
fn write_vec<T>(path: String, v: &Vec<T>) -> io::Result<()>
where
T: ser::Writeable,
{
let mut file_path = File::create(&path)?;
ser::serialize(&mut file_path, v).map_err(|_| {
io::Error::new(
io::ErrorKind::InvalidInput,
format!("Failed to serialize data when writing to {}", path),
)
})?;
Ok(())
}