mirror of
https://github.com/mimblewimble/grin.git
synced 2025-01-21 11:31:08 +03:00
6faa0e8d75
* Introduce GLOBAL_CHAIN_TYPE and make CHAIN_TYPE thread_local. This makes testing more explicit and significantly more robust. * set_local_chain_type() in tests * cleanup - weird * get pool tests working with explicit local chain_type config * core tests working with explicit local chain_type * p2p tests working with explicit local chain_type * store tests working * cleanup, feedback
478 lines
15 KiB
Rust
478 lines
15 KiB
Rust
// Copyright 2020 The Grin Developers
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
pub mod common;
|
|
|
|
use self::core::core::verifier_cache::LruVerifierCache;
|
|
use self::core::core::{transaction, Block, BlockHeader, Weighting};
|
|
use self::core::pow::Difficulty;
|
|
use self::core::{global, libtx};
|
|
use self::keychain::{ExtKeychain, Keychain};
|
|
use self::pool::TxSource;
|
|
use self::util::RwLock;
|
|
use crate::common::*;
|
|
use grin_core as core;
|
|
use grin_keychain as keychain;
|
|
use grin_pool as pool;
|
|
use grin_util as util;
|
|
use std::sync::Arc;
|
|
|
|
/// Test we can add some txs to the pool (both stempool and txpool).
|
|
#[test]
|
|
fn test_the_transaction_pool() {
|
|
// Use mainnet config to allow for reasonably large block weights.
|
|
global::set_local_chain_type(global::ChainTypes::Mainnet);
|
|
let keychain: ExtKeychain = Keychain::from_random_seed(false).unwrap();
|
|
|
|
let db_root = ".grin_transaction_pool".to_string();
|
|
clean_output_dir(db_root.clone());
|
|
|
|
let chain = Arc::new(ChainAdapter::init(db_root.clone()).unwrap());
|
|
|
|
let verifier_cache = Arc::new(RwLock::new(LruVerifierCache::new()));
|
|
|
|
// Initialize a new pool with our chain adapter.
|
|
let pool = RwLock::new(test_setup(chain.clone(), verifier_cache.clone()));
|
|
|
|
let header = {
|
|
let height = 1;
|
|
let key_id = ExtKeychain::derive_key_id(1, height as u32, 0, 0, 0);
|
|
let reward = libtx::reward::output(
|
|
&keychain,
|
|
&libtx::ProofBuilder::new(&keychain),
|
|
&key_id,
|
|
0,
|
|
false,
|
|
)
|
|
.unwrap();
|
|
let block = Block::new(&BlockHeader::default(), vec![], Difficulty::min(), reward).unwrap();
|
|
|
|
chain.update_db_for_block(&block);
|
|
|
|
block.header
|
|
};
|
|
|
|
// Now create tx to spend a coinbase, giving us some useful outputs for testing
|
|
// with.
|
|
let initial_tx = {
|
|
test_transaction_spending_coinbase(
|
|
&keychain,
|
|
&header,
|
|
vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400],
|
|
)
|
|
};
|
|
|
|
// Add this tx to the pool (stem=false, direct to txpool).
|
|
{
|
|
let mut write_pool = pool.write();
|
|
write_pool
|
|
.add_to_pool(test_source(), initial_tx, false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
}
|
|
|
|
// Test adding a tx that "double spends" an output currently spent by a tx
|
|
// already in the txpool. In this case we attempt to spend the original coinbase twice.
|
|
{
|
|
let tx = test_transaction_spending_coinbase(&keychain, &header, vec![501]);
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx, false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// tx1 spends some outputs from the initial test tx.
|
|
let tx1 = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
|
|
// tx2 spends some outputs from both tx1 and the initial test tx.
|
|
let tx2 = test_transaction(&keychain, vec![499, 700], vec![498]);
|
|
|
|
// Take a write lock and add a couple of tx entries to the pool.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
|
|
// Check we have a single initial tx in the pool.
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
|
|
// First, add a simple tx directly to the txpool (stem = false).
|
|
write_pool
|
|
.add_to_pool(test_source(), tx1.clone(), false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 2);
|
|
|
|
// Add another tx spending outputs from the previous tx.
|
|
write_pool
|
|
.add_to_pool(test_source(), tx2.clone(), false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 3);
|
|
}
|
|
|
|
// Test adding the exact same tx multiple times (same kernel signature).
|
|
// This will fail for stem=false during tx aggregation due to duplicate
|
|
// outputs and duplicate kernels.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx1.clone(), false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// Test adding a duplicate tx with the same input and outputs.
|
|
// Note: not the *same* tx, just same underlying inputs/outputs.
|
|
{
|
|
let tx1a = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx1a, false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// Test adding a tx attempting to spend a non-existent output.
|
|
{
|
|
let bad_tx = test_transaction(&keychain, vec![10_001], vec![10_000]);
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), bad_tx, false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// Test adding a tx that would result in a duplicate output (conflicts with
|
|
// output from tx2). For reasons of security all outputs in the UTXO set must
|
|
// be unique. Otherwise spending one will almost certainly cause the other
|
|
// to be immediately stolen via a "replay" tx.
|
|
{
|
|
let tx = test_transaction(&keychain, vec![900], vec![498]);
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx, false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// Confirm the tx pool correctly identifies an invalid tx (already spent).
|
|
{
|
|
let mut write_pool = pool.write();
|
|
let tx3 = test_transaction(&keychain, vec![500], vec![497]);
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx3, false, &header)
|
|
.is_err());
|
|
assert_eq!(write_pool.total_size(), 3);
|
|
}
|
|
|
|
// Now add a couple of txs to the stempool (stem = true).
|
|
{
|
|
let mut write_pool = pool.write();
|
|
let tx = test_transaction(&keychain, vec![599], vec![598]);
|
|
write_pool
|
|
.add_to_pool(test_source(), tx, true, &header)
|
|
.unwrap();
|
|
let tx2 = test_transaction(&keychain, vec![598], vec![597]);
|
|
write_pool
|
|
.add_to_pool(test_source(), tx2, true, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 3);
|
|
assert_eq!(write_pool.stempool.size(), 2);
|
|
}
|
|
|
|
// Check we can take some entries from the stempool and "fluff" them into the
|
|
// txpool. This also exercises multi-kernel txs.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
let agg_tx = write_pool
|
|
.stempool
|
|
.all_transactions_aggregate()
|
|
.unwrap()
|
|
.unwrap();
|
|
assert_eq!(agg_tx.kernels().len(), 2);
|
|
write_pool
|
|
.add_to_pool(test_source(), agg_tx, false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 4);
|
|
assert!(write_pool.stempool.is_empty());
|
|
}
|
|
|
|
// Adding a duplicate tx to the stempool will result in it being fluffed.
|
|
// This handles the case of the stem path having a cycle in it.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
let tx = test_transaction(&keychain, vec![597], vec![596]);
|
|
write_pool
|
|
.add_to_pool(test_source(), tx.clone(), true, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 4);
|
|
assert_eq!(write_pool.stempool.size(), 1);
|
|
|
|
// Duplicate stem tx so fluff, adding it to txpool and removing it from stempool.
|
|
write_pool
|
|
.add_to_pool(test_source(), tx.clone(), true, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 5);
|
|
assert!(write_pool.stempool.is_empty());
|
|
}
|
|
|
|
// Now check we can correctly deaggregate a multi-kernel tx based on current
|
|
// contents of the txpool.
|
|
// We will do this be adding a new tx to the pool
|
|
// that is a superset of a tx already in the pool.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
|
|
let tx4 = test_transaction(&keychain, vec![800], vec![799]);
|
|
// tx1 and tx2 are already in the txpool (in aggregated form)
|
|
// tx4 is the "new" part of this aggregated tx that we care about
|
|
let agg_tx = transaction::aggregate(vec![tx1.clone(), tx2.clone(), tx4]).unwrap();
|
|
|
|
agg_tx
|
|
.validate(Weighting::AsTransaction, verifier_cache.clone())
|
|
.unwrap();
|
|
|
|
write_pool
|
|
.add_to_pool(test_source(), agg_tx, false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 6);
|
|
let entry = write_pool.txpool.entries.last().unwrap();
|
|
assert_eq!(entry.tx.kernels().len(), 1);
|
|
assert_eq!(entry.src, TxSource::Deaggregate);
|
|
}
|
|
|
|
// Check we cannot "double spend" an output spent in a previous block.
|
|
// We use the initial coinbase output here for convenience.
|
|
{
|
|
let chain = Arc::new(ChainAdapter::init(db_root.clone()).unwrap());
|
|
|
|
let verifier_cache = Arc::new(RwLock::new(LruVerifierCache::new()));
|
|
|
|
// Initialize a new pool with our chain adapter.
|
|
let pool = RwLock::new(test_setup(chain.clone(), verifier_cache.clone()));
|
|
|
|
let header = {
|
|
let height = 1;
|
|
let key_id = ExtKeychain::derive_key_id(1, height as u32, 0, 0, 0);
|
|
let reward = libtx::reward::output(
|
|
&keychain,
|
|
&libtx::ProofBuilder::new(&keychain),
|
|
&key_id,
|
|
0,
|
|
false,
|
|
)
|
|
.unwrap();
|
|
let block =
|
|
Block::new(&BlockHeader::default(), vec![], Difficulty::min(), reward).unwrap();
|
|
|
|
chain.update_db_for_block(&block);
|
|
|
|
block.header
|
|
};
|
|
|
|
// Now create tx to spend a coinbase, giving us some useful outputs for testing
|
|
// with.
|
|
let initial_tx = {
|
|
test_transaction_spending_coinbase(
|
|
&keychain,
|
|
&header,
|
|
vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400],
|
|
)
|
|
};
|
|
|
|
// Add this tx to the pool (stem=false, direct to txpool).
|
|
{
|
|
let mut write_pool = pool.write();
|
|
write_pool
|
|
.add_to_pool(test_source(), initial_tx, false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
}
|
|
|
|
// Test adding a tx that "double spends" an output currently spent by a tx
|
|
// already in the txpool. In this case we attempt to spend the original coinbase twice.
|
|
{
|
|
let tx = test_transaction_spending_coinbase(&keychain, &header, vec![501]);
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx, false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// tx1 spends some outputs from the initial test tx.
|
|
let tx1 = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
|
|
// tx2 spends some outputs from both tx1 and the initial test tx.
|
|
let tx2 = test_transaction(&keychain, vec![499, 700], vec![498]);
|
|
|
|
// Take a write lock and add a couple of tx entries to the pool.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
|
|
// Check we have a single initial tx in the pool.
|
|
assert_eq!(write_pool.total_size(), 1);
|
|
|
|
// First, add a simple tx directly to the txpool (stem = false).
|
|
write_pool
|
|
.add_to_pool(test_source(), tx1.clone(), false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 2);
|
|
|
|
// Add another tx spending outputs from the previous tx.
|
|
write_pool
|
|
.add_to_pool(test_source(), tx2.clone(), false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 3);
|
|
}
|
|
|
|
// Test adding the exact same tx multiple times (same kernel signature).
|
|
// This will fail for stem=false during tx aggregation due to duplicate
|
|
// outputs and duplicate kernels.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx1.clone(), false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// Test adding a duplicate tx with the same input and outputs.
|
|
// Note: not the *same* tx, just same underlying inputs/outputs.
|
|
{
|
|
let tx1a = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx1a, false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// Test adding a tx attempting to spend a non-existent output.
|
|
{
|
|
let bad_tx = test_transaction(&keychain, vec![10_001], vec![10_000]);
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), bad_tx, false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// Test adding a tx that would result in a duplicate output (conflicts with
|
|
// output from tx2). For reasons of security all outputs in the UTXO set must
|
|
// be unique. Otherwise spending one will almost certainly cause the other
|
|
// to be immediately stolen via a "replay" tx.
|
|
{
|
|
let tx = test_transaction(&keychain, vec![900], vec![498]);
|
|
let mut write_pool = pool.write();
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx, false, &header)
|
|
.is_err());
|
|
}
|
|
|
|
// Confirm the tx pool correctly identifies an invalid tx (already spent).
|
|
{
|
|
let mut write_pool = pool.write();
|
|
let tx3 = test_transaction(&keychain, vec![500], vec![497]);
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), tx3, false, &header)
|
|
.is_err());
|
|
assert_eq!(write_pool.total_size(), 3);
|
|
}
|
|
|
|
// Now add a couple of txs to the stempool (stem = true).
|
|
{
|
|
let mut write_pool = pool.write();
|
|
let tx = test_transaction(&keychain, vec![599], vec![598]);
|
|
write_pool
|
|
.add_to_pool(test_source(), tx, true, &header)
|
|
.unwrap();
|
|
let tx2 = test_transaction(&keychain, vec![598], vec![597]);
|
|
write_pool
|
|
.add_to_pool(test_source(), tx2, true, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 3);
|
|
assert_eq!(write_pool.stempool.size(), 2);
|
|
}
|
|
|
|
// Check we can take some entries from the stempool and "fluff" them into the
|
|
// txpool. This also exercises multi-kernel txs.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
let agg_tx = write_pool
|
|
.stempool
|
|
.all_transactions_aggregate()
|
|
.unwrap()
|
|
.unwrap();
|
|
assert_eq!(agg_tx.kernels().len(), 2);
|
|
write_pool
|
|
.add_to_pool(test_source(), agg_tx, false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 4);
|
|
assert!(write_pool.stempool.is_empty());
|
|
}
|
|
|
|
// Adding a duplicate tx to the stempool will result in it being fluffed.
|
|
// This handles the case of the stem path having a cycle in it.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
let tx = test_transaction(&keychain, vec![597], vec![596]);
|
|
write_pool
|
|
.add_to_pool(test_source(), tx.clone(), true, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 4);
|
|
assert_eq!(write_pool.stempool.size(), 1);
|
|
|
|
// Duplicate stem tx so fluff, adding it to txpool and removing it from stempool.
|
|
write_pool
|
|
.add_to_pool(test_source(), tx.clone(), true, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 5);
|
|
assert!(write_pool.stempool.is_empty());
|
|
}
|
|
|
|
// Now check we can correctly deaggregate a multi-kernel tx based on current
|
|
// contents of the txpool.
|
|
// We will do this be adding a new tx to the pool
|
|
// that is a superset of a tx already in the pool.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
|
|
let tx4 = test_transaction(&keychain, vec![800], vec![799]);
|
|
// tx1 and tx2 are already in the txpool (in aggregated form)
|
|
// tx4 is the "new" part of this aggregated tx that we care about
|
|
let agg_tx = transaction::aggregate(vec![tx1.clone(), tx2.clone(), tx4]).unwrap();
|
|
|
|
agg_tx
|
|
.validate(Weighting::AsTransaction, verifier_cache.clone())
|
|
.unwrap();
|
|
|
|
write_pool
|
|
.add_to_pool(test_source(), agg_tx, false, &header)
|
|
.unwrap();
|
|
assert_eq!(write_pool.total_size(), 6);
|
|
let entry = write_pool.txpool.entries.last().unwrap();
|
|
assert_eq!(entry.tx.kernels().len(), 1);
|
|
assert_eq!(entry.src, TxSource::Deaggregate);
|
|
}
|
|
|
|
// Check we cannot "double spend" an output spent in a previous block.
|
|
// We use the initial coinbase output here for convenience.
|
|
{
|
|
let mut write_pool = pool.write();
|
|
|
|
let double_spend_tx =
|
|
{ test_transaction_spending_coinbase(&keychain, &header, vec![1000]) };
|
|
|
|
// check we cannot add a double spend to the stempool
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), double_spend_tx.clone(), true, &header)
|
|
.is_err());
|
|
|
|
// check we cannot add a double spend to the txpool
|
|
assert!(write_pool
|
|
.add_to_pool(test_source(), double_spend_tx.clone(), false, &header)
|
|
.is_err());
|
|
}
|
|
}
|
|
// Cleanup db directory
|
|
clean_output_dir(db_root.clone());
|
|
}
|