grin/core/src/pow/cuckatoo.rs
hashmap 43bd5a56ff Make imports in core crate more Rust 2018 idiomatic (#3112)
We use crate renaming to remove grin prefix, as  result imports for util and keychain crates start with crate::
which looks like a part of the current crate. This PR fixes it.
Also some small improvements were made.
If this approach works I'll replicate it to other crates.
2019-11-14 10:27:30 -05:00

487 lines
13 KiB
Rust

//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of Cuckatoo Cycle designed by John Tromp.
use crate::global;
use crate::pow::common::{CuckooParams, EdgeType, Link};
use crate::pow::error::{Error, ErrorKind};
use crate::pow::{PoWContext, Proof};
use byteorder::{BigEndian, WriteBytesExt};
use croaring::Bitmap;
use std::mem;
use util;
struct Graph<T>
where
T: EdgeType,
{
/// Maximum number of edges
max_edges: T,
/// Maximum nodes
max_nodes: u64,
/// Adjacency links
links: Vec<Link<T>>,
/// Index into links array
adj_list: Vec<T>,
///
visited: Bitmap,
/// Maximum solutions
max_sols: u32,
///
pub solutions: Vec<Proof>,
/// proof size
proof_size: usize,
/// define NIL type
nil: T,
}
impl<T> Graph<T>
where
T: EdgeType,
{
/// Create a new graph with given parameters
pub fn new(max_edges: T, max_sols: u32, proof_size: usize) -> Result<Graph<T>, Error> {
if to_u64!(max_edges) >= u64::max_value() / 2 {
return Err(ErrorKind::Verification(format!("graph is to big to build")))?;
}
let max_nodes = 2 * to_u64!(max_edges);
Ok(Graph {
max_edges,
max_nodes,
max_sols,
proof_size,
links: vec![],
adj_list: vec![],
visited: Bitmap::create(),
solutions: vec![],
nil: T::max_value(),
})
}
pub fn reset(&mut self) -> Result<(), Error> {
//TODO: Can be optimised
self.links = Vec::with_capacity(2 * self.max_nodes as usize);
self.adj_list = vec![T::max_value(); 2 * self.max_nodes as usize];
self.solutions = vec![Proof::zero(self.proof_size); 1];
self.visited = Bitmap::create();
Ok(())
}
pub fn byte_count(&self) -> Result<u64, Error> {
Ok(
2 * to_u64!(self.max_edges) * mem::size_of::<Link<T>>() as u64
+ mem::size_of::<T>() as u64 * 2 * self.max_nodes,
)
}
/// Add an edge to the graph
pub fn add_edge(&mut self, u: T, mut v: T) -> Result<(), Error> {
let max_nodes_t = to_edge!(T, self.max_nodes);
if u >= max_nodes_t || v >= max_nodes_t {
return Err(ErrorKind::EdgeAddition)?;
}
v = v + to_edge!(T, self.max_nodes);
let adj_u = self.adj_list[to_usize!(u ^ T::one())];
let adj_v = self.adj_list[to_usize!(v ^ T::one())];
if adj_u != self.nil && adj_v != self.nil {
let sol_index = self.solutions.len() - 1;
self.solutions[sol_index].nonces[0] = self.links.len() as u64 / 2;
self.cycles_with_link(1, u, v)?;
}
let ulink = self.links.len();
let vlink = self.links.len() + 1;
if to_edge!(T, vlink) == self.nil {
return Err(ErrorKind::EdgeAddition)?;
}
self.links.push(Link {
next: self.adj_list[to_usize!(u)],
to: u,
});
self.links.push(Link {
next: self.adj_list[to_usize!(v)],
to: v,
});
self.adj_list[to_usize!(u)] = T::from(ulink).ok_or(ErrorKind::IntegerCast)?;
self.adj_list[to_usize!(v)] = T::from(vlink).ok_or(ErrorKind::IntegerCast)?;
Ok(())
}
fn test_bit(&mut self, u: u64) -> bool {
self.visited.contains(u as u32)
}
fn cycles_with_link(&mut self, len: u32, u: T, dest: T) -> Result<(), Error> {
if self.test_bit(to_u64!(u >> 1)) {
return Ok(());
}
if (u ^ T::one()) == dest {
if len == self.proof_size as u32 {
if self.solutions.len() < self.max_sols as usize {
// create next solution
self.solutions.push(Proof::zero(self.proof_size));
}
return Ok(());
}
} else if len == self.proof_size as u32 {
return Ok(());
}
let mut au1 = self.adj_list[to_usize!(u ^ T::one())];
if au1 != self.nil {
self.visited.add(to_u32!(u >> 1));
while au1 != self.nil {
let i = self.solutions.len() - 1;
self.solutions[i].nonces[len as usize] = to_u64!(au1) / 2;
let link_index = to_usize!(au1 ^ T::one());
let link = self.links[link_index].to;
if link != self.nil {
self.cycles_with_link(len + 1, link, dest)?;
}
au1 = self.links[to_usize!(au1)].next;
}
self.visited.remove(to_u32!(u >> 1));
}
Ok(())
}
}
/// Instantiate a new CuckatooContext as a PowContext. Note that this can't
/// be moved in the PoWContext trait as this particular trait needs to be
/// convertible to an object trait.
pub fn new_cuckatoo_ctx<T>(
edge_bits: u8,
proof_size: usize,
max_sols: u32,
) -> Result<Box<dyn PoWContext<T>>, Error>
where
T: EdgeType + 'static,
{
Ok(Box::new(CuckatooContext::<T>::new_impl(
edge_bits, proof_size, max_sols,
)?))
}
/// Cuckatoo solver context
pub struct CuckatooContext<T>
where
T: EdgeType,
{
params: CuckooParams<T>,
graph: Graph<T>,
}
impl<T> PoWContext<T> for CuckatooContext<T>
where
T: EdgeType,
{
fn set_header_nonce(
&mut self,
header: Vec<u8>,
nonce: Option<u32>,
solve: bool,
) -> Result<(), Error> {
self.set_header_nonce_impl(header, nonce, solve)
}
fn find_cycles(&mut self) -> Result<Vec<Proof>, Error> {
let num_edges = self.params.num_edges;
self.find_cycles_iter(0..num_edges)
}
fn verify(&self, proof: &Proof) -> Result<(), Error> {
self.verify_impl(proof)
}
}
impl<T> CuckatooContext<T>
where
T: EdgeType,
{
/// New Solver context
pub fn new_impl(
edge_bits: u8,
proof_size: usize,
max_sols: u32,
) -> Result<CuckatooContext<T>, Error> {
let params = CuckooParams::new(edge_bits, proof_size)?;
let num_edges = to_edge!(T, params.num_edges);
Ok(CuckatooContext {
params,
graph: Graph::new(num_edges, max_sols, proof_size)?,
})
}
/// Get a siphash key as a hex string (for display convenience)
pub fn sipkey_hex(&self, index: usize) -> Result<String, Error> {
let mut rdr = vec![];
rdr.write_u64::<BigEndian>(self.params.siphash_keys[index])?;
Ok(util::to_hex(rdr))
}
/// Return number of bytes used by the graph
pub fn byte_count(&self) -> Result<u64, Error> {
self.graph.byte_count()
}
/// Set the header and optional nonce in the last part of the header
pub fn set_header_nonce_impl(
&mut self,
header: Vec<u8>,
nonce: Option<u32>,
solve: bool,
) -> Result<(), Error> {
self.params.reset_header_nonce(header, nonce)?;
if solve {
self.graph.reset()?;
}
Ok(())
}
/// Return siphash masked for type
pub fn sipnode(&self, edge: T, uorv: u64) -> Result<T, Error> {
self.params.sipnode(edge, uorv, false)
}
/// Simple implementation of algorithm
pub fn find_cycles_iter<I>(&mut self, iter: I) -> Result<Vec<Proof>, Error>
where
I: Iterator<Item = u64>,
{
let mut val = vec![];
for n in iter {
val.push(n);
let u = self.sipnode(to_edge!(T, n), 0)?;
let v = self.sipnode(to_edge!(T, n), 1)?;
self.graph.add_edge(to_edge!(T, u), to_edge!(T, v))?;
}
self.graph.solutions.pop();
for s in &mut self.graph.solutions {
s.nonces = map_vec!(s.nonces, |n| val[*n as usize]);
s.nonces.sort_unstable();
}
for s in &self.graph.solutions {
self.verify_impl(&s)?;
}
if self.graph.solutions.is_empty() {
Err(ErrorKind::NoSolution)?
} else {
Ok(self.graph.solutions.clone())
}
}
/// Verify that given edges are ascending and form a cycle in a header-generated
/// graph
pub fn verify_impl(&self, proof: &Proof) -> Result<(), Error> {
if proof.proof_size() != global::proofsize() {
return Err(ErrorKind::Verification("wrong cycle length".to_owned()))?;
}
let nonces = &proof.nonces;
let mut uvs = vec![0u64; 2 * proof.proof_size()];
let mut xor0: u64 = (self.params.proof_size as u64 / 2) & 1;
let mut xor1: u64 = xor0;
for n in 0..proof.proof_size() {
if nonces[n] > to_u64!(self.params.edge_mask) {
return Err(ErrorKind::Verification("edge too big".to_owned()))?;
}
if n > 0 && nonces[n] <= nonces[n - 1] {
return Err(ErrorKind::Verification("edges not ascending".to_owned()))?;
}
uvs[2 * n] = to_u64!(self.sipnode(to_edge!(T, nonces[n]), 0)?);
uvs[2 * n + 1] = to_u64!(self.sipnode(to_edge!(T, nonces[n]), 1)?);
xor0 ^= uvs[2 * n];
xor1 ^= uvs[2 * n + 1];
}
if xor0 | xor1 != 0 {
return Err(ErrorKind::Verification(
"endpoints don't match up".to_owned(),
))?;
}
let mut n = 0;
let mut i = 0;
let mut j;
loop {
// follow cycle
j = i;
let mut k = j;
loop {
k = (k + 2) % (2 * self.params.proof_size);
if k == i {
break;
}
if uvs[k] >> 1 == uvs[i] >> 1 {
// find other edge endpoint matching one at i
if j != i {
return Err(ErrorKind::Verification("branch in cycle".to_owned()))?;
}
j = k;
}
}
if j == i || uvs[j] == uvs[i] {
return Err(ErrorKind::Verification("cycle dead ends".to_owned()))?;
}
i = j ^ 1;
n += 1;
if i == 0 {
break;
}
}
if n == self.params.proof_size {
Ok(())
} else {
Err(ErrorKind::Verification("cycle too short".to_owned()))?
}
}
}
#[cfg(test)]
mod test {
use super::*;
// Cuckatoo 29 Solution for Header [0u8;80] - nonce 20
static V1_29: [u64; 42] = [
0x48a9e2, 0x9cf043, 0x155ca30, 0x18f4783, 0x248f86c, 0x2629a64, 0x5bad752, 0x72e3569,
0x93db760, 0x97d3b37, 0x9e05670, 0xa315d5a, 0xa3571a1, 0xa48db46, 0xa7796b6, 0xac43611,
0xb64912f, 0xbb6c71e, 0xbcc8be1, 0xc38a43a, 0xd4faa99, 0xe018a66, 0xe37e49c, 0xfa975fa,
0x11786035, 0x1243b60a, 0x12892da0, 0x141b5453, 0x1483c3a0, 0x1505525e, 0x1607352c,
0x16181fe3, 0x17e3a1da, 0x180b651e, 0x1899d678, 0x1931b0bb, 0x19606448, 0x1b041655,
0x1b2c20ad, 0x1bd7a83c, 0x1c05d5b0, 0x1c0b9caa,
];
// Cuckatoo 31 Solution for Header [0u8;80] - nonce 99
static V1_31: [u64; 42] = [
0x1128e07, 0xc181131, 0x110fad36, 0x1135ddee, 0x1669c7d3, 0x1931e6ea, 0x1c0005f3,
0x1dd6ecca, 0x1e29ce7e, 0x209736fc, 0x2692bf1a, 0x27b85aa9, 0x29bb7693, 0x2dc2a047,
0x2e28650a, 0x2f381195, 0x350eb3f9, 0x3beed728, 0x3e861cbc, 0x41448cc1, 0x41f08f6d,
0x42fbc48a, 0x4383ab31, 0x4389c61f, 0x4540a5ce, 0x49a17405, 0x50372ded, 0x512f0db0,
0x588b6288, 0x5a36aa46, 0x5c29e1fe, 0x6118ab16, 0x634705b5, 0x6633d190, 0x6683782f,
0x6728b6e1, 0x67adfb45, 0x68ae2306, 0x6d60f5e1, 0x78af3c4f, 0x7dde51ab, 0x7faced21,
];
#[test]
fn cuckatoo() {
let ret = basic_solve::<u32>();
if let Err(r) = ret {
panic!("basic_solve u32: Error: {}", r);
}
let ret = basic_solve::<u64>();
if let Err(r) = ret {
panic!("basic_solve u64: Error: {}", r);
}
let ret = validate29_vectors::<u32>();
if let Err(r) = ret {
panic!("validate_29_vectors u32: Error: {}", r);
}
let ret = validate29_vectors::<u64>();
if let Err(r) = ret {
panic!("validate_29_vectors u64: Error: {}", r);
}
let ret = validate31_vectors::<u32>();
if let Err(r) = ret {
panic!("validate_31_vectors u32: Error: {}", r);
}
let ret = validate31_vectors::<u64>();
if let Err(r) = ret {
panic!("validate_31_vectors u64: Error: {}", r);
}
let ret = validate_fail::<u32>();
if let Err(r) = ret {
panic!("validate_fail u32: Error: {}", r);
}
let ret = validate_fail::<u64>();
if let Err(r) = ret {
panic!("validate_fail u64: Error: {}", r);
}
}
fn validate29_vectors<T>() -> Result<(), Error>
where
T: EdgeType,
{
let mut ctx = CuckatooContext::<u32>::new_impl(29, 42, 10).unwrap();
ctx.set_header_nonce([0u8; 80].to_vec(), Some(20), false)?;
assert!(ctx.verify(&Proof::new(V1_29.to_vec().clone())).is_ok());
Ok(())
}
fn validate31_vectors<T>() -> Result<(), Error>
where
T: EdgeType,
{
let mut ctx = CuckatooContext::<u32>::new_impl(31, 42, 10).unwrap();
ctx.set_header_nonce([0u8; 80].to_vec(), Some(99), false)?;
assert!(ctx.verify(&Proof::new(V1_31.to_vec().clone())).is_ok());
Ok(())
}
fn validate_fail<T>() -> Result<(), Error>
where
T: EdgeType,
{
let mut ctx = CuckatooContext::<u32>::new_impl(29, 42, 10).unwrap();
let mut header = [0u8; 80];
header[0] = 1u8;
ctx.set_header_nonce(header.to_vec(), Some(20), false)?;
assert!(!ctx.verify(&Proof::new(V1_29.to_vec().clone())).is_ok());
header[0] = 0u8;
ctx.set_header_nonce(header.to_vec(), Some(20), false)?;
assert!(ctx.verify(&Proof::new(V1_29.to_vec().clone())).is_ok());
let mut bad_proof = V1_29.clone();
bad_proof[0] = 0x48a9e1;
assert!(!ctx.verify(&Proof::new(bad_proof.to_vec())).is_ok());
Ok(())
}
fn basic_solve<T>() -> Result<(), Error>
where
T: EdgeType,
{
let nonce = 1546569;
let _range = 1;
let header = [0u8; 80].to_vec();
let proof_size = 42;
let edge_bits = 15;
let max_sols = 4;
println!(
"Looking for {}-cycle on cuckatoo{}(\"{}\",{})",
proof_size,
edge_bits,
String::from_utf8(header.clone()).unwrap(),
nonce
);
let mut ctx_u32 = CuckatooContext::<u32>::new_impl(edge_bits, proof_size, max_sols)?;
let mut bytes = ctx_u32.byte_count()?;
let mut unit = 0;
while bytes >= 10240 {
bytes >>= 10;
unit += 1;
}
println!("Using {}{}B memory", bytes, [' ', 'K', 'M', 'G', 'T'][unit]);
ctx_u32.set_header_nonce(header, Some(nonce), true)?;
println!(
"Nonce {} k0 k1 k2 k3 {} {} {} {}",
nonce,
ctx_u32.sipkey_hex(0)?,
ctx_u32.sipkey_hex(1)?,
ctx_u32.sipkey_hex(2)?,
ctx_u32.sipkey_hex(3)?
);
let sols = ctx_u32.find_cycles()?;
// We know this nonce has 2 solutions
assert_eq!(sols.len(), 2);
for s in sols {
println!("{:?}", s);
}
Ok(())
}
}