grin/keychain/src/keychain.rs
Quentin Le Sceller 0259ed23ea
Update copyright year to 2021 (#3592)
* Update copyright year to 2021
2021-03-10 10:14:48 -05:00

298 lines
8.2 KiB
Rust

// Copyright 2021 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// Implementation of the Keychain trait based on an extended key derivation
/// scheme.
use rand::distributions::Alphanumeric;
use rand::{thread_rng, Rng};
use crate::blake2::blake2b::blake2b;
use crate::extkey_bip32::{BIP32GrinHasher, ExtendedPrivKey, ExtendedPubKey};
use crate::types::{
BlindSum, BlindingFactor, Error, ExtKeychainPath, Identifier, Keychain, SwitchCommitmentType,
};
use crate::util::secp::key::{PublicKey, SecretKey};
use crate::util::secp::pedersen::Commitment;
use crate::util::secp::{self, Message, Secp256k1, Signature};
#[derive(Clone, Debug)]
pub struct ExtKeychain {
secp: Secp256k1,
pub master: ExtendedPrivKey,
hasher: BIP32GrinHasher,
}
impl ExtKeychain {
pub fn pub_root_key(&mut self) -> ExtendedPubKey {
ExtendedPubKey::from_private(&self.secp, &self.master, &mut self.hasher)
}
pub fn hasher(&self) -> BIP32GrinHasher {
self.hasher.clone()
}
}
impl Keychain for ExtKeychain {
fn from_seed(seed: &[u8], is_test: bool) -> Result<ExtKeychain, Error> {
let mut h = BIP32GrinHasher::new(is_test);
let secp = secp::Secp256k1::with_caps(secp::ContextFlag::Commit);
let master = ExtendedPrivKey::new_master(&secp, &mut h, seed)?;
let keychain = ExtKeychain {
secp: secp,
master: master,
hasher: h,
};
Ok(keychain)
}
fn from_mnemonic(word_list: &str, extension_word: &str, is_test: bool) -> Result<Self, Error> {
let secp = secp::Secp256k1::with_caps(secp::ContextFlag::Commit);
let h = BIP32GrinHasher::new(is_test);
let master = ExtendedPrivKey::from_mnemonic(&secp, word_list, extension_word, is_test)?;
let keychain = ExtKeychain {
secp: secp,
master: master,
hasher: h,
};
Ok(keychain)
}
fn mask_master_key(&mut self, mask: &SecretKey) -> Result<(), Error> {
for i in 0..secp::constants::SECRET_KEY_SIZE {
self.master.secret_key.0[i] ^= mask.0[i];
}
Ok(())
}
/// For testing - probably not a good idea to use outside of tests.
fn from_random_seed(is_test: bool) -> Result<ExtKeychain, Error> {
let seed: String = thread_rng().sample_iter(&Alphanumeric).take(16).collect();
let seed = blake2b(32, &[], seed.as_bytes());
ExtKeychain::from_seed(seed.as_bytes(), is_test)
}
fn root_key_id() -> Identifier {
ExtKeychainPath::new(0, 0, 0, 0, 0).to_identifier()
}
fn derive_key_id(depth: u8, d1: u32, d2: u32, d3: u32, d4: u32) -> Identifier {
ExtKeychainPath::new(depth, d1, d2, d3, d4).to_identifier()
}
fn public_root_key(&self) -> PublicKey {
let mut hasher = self.hasher.clone();
ExtendedPubKey::from_private(&self.secp, &self.master, &mut hasher).public_key
}
fn derive_key(
&self,
amount: u64,
id: &Identifier,
switch: SwitchCommitmentType,
) -> Result<SecretKey, Error> {
let mut h = self.hasher.clone();
let p = id.to_path();
let mut ext_key = self.master.clone();
for i in 0..p.depth {
ext_key = ext_key.ckd_priv(&self.secp, &mut h, p.path[i as usize])?;
}
match switch {
SwitchCommitmentType::Regular => {
Ok(self.secp.blind_switch(amount, ext_key.secret_key)?)
}
SwitchCommitmentType::None => Ok(ext_key.secret_key),
}
}
fn commit(
&self,
amount: u64,
id: &Identifier,
switch: SwitchCommitmentType,
) -> Result<Commitment, Error> {
let key = self.derive_key(amount, id, switch)?;
let commit = self.secp.commit(amount, key)?;
Ok(commit)
}
fn blind_sum(&self, blind_sum: &BlindSum) -> Result<BlindingFactor, Error> {
let mut pos_keys: Vec<SecretKey> = blind_sum
.positive_key_ids
.iter()
.filter_map(|k| {
let res = self.derive_key(
k.value,
&Identifier::from_path(&k.ext_keychain_path),
k.switch,
);
if let Ok(s) = res {
Some(s)
} else {
None
}
})
.collect();
let mut neg_keys: Vec<SecretKey> = blind_sum
.negative_key_ids
.iter()
.filter_map(|k| {
let res = self.derive_key(
k.value,
&Identifier::from_path(&k.ext_keychain_path),
k.switch,
);
if let Ok(s) = res {
Some(s)
} else {
None
}
})
.collect();
let keys = blind_sum
.positive_blinding_factors
.iter()
.filter_map(|b| b.secret_key(&self.secp).ok())
.collect::<Vec<SecretKey>>();
pos_keys.extend(keys);
let keys = blind_sum
.negative_blinding_factors
.iter()
.filter_map(|b| b.secret_key(&self.secp).ok())
.collect::<Vec<SecretKey>>();
neg_keys.extend(keys);
let sum = self.secp.blind_sum(pos_keys, neg_keys)?;
Ok(BlindingFactor::from_secret_key(sum))
}
fn sign(
&self,
msg: &Message,
amount: u64,
id: &Identifier,
switch: SwitchCommitmentType,
) -> Result<Signature, Error> {
let skey = self.derive_key(amount, id, switch)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
fn sign_with_blinding(
&self,
msg: &Message,
blinding: &BlindingFactor,
) -> Result<Signature, Error> {
let skey = &blinding.secret_key(&self.secp)?;
let sig = self.secp.sign(msg, &skey)?;
Ok(sig)
}
fn secp(&self) -> &Secp256k1 {
&self.secp
}
}
#[cfg(test)]
mod test {
use crate::keychain::ExtKeychain;
use crate::types::{BlindSum, BlindingFactor, ExtKeychainPath, Keychain};
use crate::util::secp;
use crate::util::secp::key::SecretKey;
use crate::SwitchCommitmentType;
#[test]
fn test_key_derivation() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let secp = keychain.secp();
let switch = SwitchCommitmentType::None;
let path = ExtKeychainPath::new(1, 1, 0, 0, 0);
let key_id = path.to_identifier();
let msg_bytes = [0; 32];
let msg = secp::Message::from_slice(&msg_bytes[..]).unwrap();
// now create a zero commitment using the key on the keychain associated with
// the key_id
let commit = keychain.commit(0, &key_id, switch).unwrap();
// now check we can use our key to verify a signature from this zero commitment
let sig = keychain.sign(&msg, 0, &key_id, switch).unwrap();
secp.verify_from_commit(&msg, &sig, &commit).unwrap();
}
// We plan to "offset" the key used in the kernel commitment
// so we are going to be doing some key addition/subtraction.
// This test is mainly to demonstrate that idea that summing commitments
// and summing the keys used to commit to 0 have the same result.
#[test]
fn secret_key_addition() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let skey1 = SecretKey::from_slice(
&keychain.secp,
&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1,
],
)
.unwrap();
let skey2 = SecretKey::from_slice(
&keychain.secp,
&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2,
],
)
.unwrap();
// adding secret keys 1 and 2 to give secret key 3
let mut skey3 = skey1.clone();
skey3.add_assign(&keychain.secp, &skey2).unwrap();
// create commitments for secret keys 1, 2 and 3
// all committing to the value 0 (which is what we do for tx_kernels)
let commit_1 = keychain.secp.commit(0, skey1.clone()).unwrap();
let commit_2 = keychain.secp.commit(0, skey2.clone()).unwrap();
let commit_3 = keychain.secp.commit(0, skey3.clone()).unwrap();
// now sum commitments for keys 1 and 2
let sum = keychain
.secp
.commit_sum(vec![commit_1, commit_2], vec![])
.unwrap();
// confirm the commitment for key 3 matches the sum of the commitments 1 and 2
assert_eq!(sum, commit_3);
// now check we can sum keys up using keychain.blind_sum()
// in the same way (convenience function)
assert_eq!(
keychain
.blind_sum(
&BlindSum::new()
.add_blinding_factor(BlindingFactor::from_secret_key(skey1))
.add_blinding_factor(BlindingFactor::from_secret_key(skey2))
)
.unwrap(),
BlindingFactor::from_secret_key(skey3),
);
}
}