grin/core/tests/pmmr.rs

773 lines
20 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! PMMR tests
#[macro_use]
extern crate grin_core as core;
extern crate croaring;
use croaring::Bitmap;
use core::core::hash::Hash;
use core::core::pmmr::{self, Backend, MerkleProof, PMMR};
use core::core::BlockHeader;
use core::ser::{self, Error, PMMRIndexHashable, PMMRable, Readable, Reader, Writeable, Writer};
/// Simple MMR backend implementation based on a Vector. Pruning does not
/// compact the Vec itself.
#[derive(Clone, Debug)]
pub struct VecBackend<T>
where
T: PMMRable,
{
/// Backend elements
pub elems: Vec<Option<(Hash, Option<T>)>>,
/// Positions of removed elements
pub remove_list: Vec<u64>,
}
impl<T> Backend<T> for VecBackend<T>
where
T: PMMRable,
{
fn append(&mut self, _position: u64, data: Vec<(Hash, Option<T>)>) -> Result<(), String> {
self.elems.append(&mut map_vec!(data, |d| Some(d.clone())));
Ok(())
}
fn get_hash(&self, position: u64) -> Option<Hash> {
if self.remove_list.contains(&position) {
None
} else {
if let Some(ref elem) = self.elems[(position - 1) as usize] {
Some(elem.0)
} else {
None
}
}
}
fn get_data(&self, position: u64) -> Option<T> {
if self.remove_list.contains(&position) {
None
} else {
if let Some(ref elem) = self.elems[(position - 1) as usize] {
elem.1.clone()
} else {
None
}
}
}
fn get_from_file(&self, position: u64) -> Option<Hash> {
if let Some(ref x) = self.elems[(position - 1) as usize] {
Some(x.0)
} else {
None
}
}
fn get_data_from_file(&self, position: u64) -> Option<T> {
if let Some(ref x) = self.elems[(position - 1) as usize] {
x.1.clone()
} else {
None
}
}
fn remove(&mut self, position: u64) -> Result<(), String> {
self.remove_list.push(position);
Ok(())
}
fn rewind(
&mut self,
_position: u64,
_rewind_add_pos: &Bitmap,
_rewind_rm_pos: &Bitmap,
) -> Result<(), String> {
panic!("not implemented for vec backend...");
}
fn get_data_file_path(&self) -> String {
"".to_string()
}
fn snapshot(&self, _header: &BlockHeader) -> Result<(), String> {
Ok(())
}
fn dump_stats(&self) {}
}
impl<T> VecBackend<T>
where
T: PMMRable,
{
/// Instantiates a new VecBackend<T>
pub fn new() -> VecBackend<T> {
VecBackend {
elems: vec![],
remove_list: vec![],
}
}
/// Current number of elements in the underlying Vec.
pub fn used_size(&self) -> usize {
let mut usz = self.elems.len();
for (idx, _) in self.elems.iter().enumerate() {
let idx = idx as u64;
if self.remove_list.contains(&idx) {
usz -= 1;
}
}
usz
}
}
#[test]
fn some_all_ones() {
for n in vec![1, 7, 255] {
assert!(pmmr::all_ones(n), "{} should be all ones", n);
}
for n in vec![0, 6, 9, 128] {
assert!(!pmmr::all_ones(n), "{} should not be all ones", n);
}
}
#[test]
fn some_most_signif() {
assert_eq!(pmmr::most_significant_pos(0), 0);
assert_eq!(pmmr::most_significant_pos(1), 1);
assert_eq!(pmmr::most_significant_pos(6), 3);
assert_eq!(pmmr::most_significant_pos(7), 3);
assert_eq!(pmmr::most_significant_pos(8), 4);
assert_eq!(pmmr::most_significant_pos(128), 8);
}
#[test]
#[allow(unused_variables)]
fn first_100_mmr_heights() {
let first_100_str = "0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 4 \
0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 4 5 \
0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 4 0 0 1 0 0";
let first_100 = first_100_str.split(' ').map(|n| n.parse::<u64>().unwrap());
let mut count = 1;
for n in first_100 {
assert_eq!(
n,
pmmr::bintree_postorder_height(count),
"expected {}, got {}",
n,
pmmr::bintree_postorder_height(count)
);
count += 1;
}
}
#[test]
fn test_n_leaves() {
// make sure we handle an empty MMR correctly
assert_eq!(pmmr::n_leaves(0), 0);
// and various sizes on non-empty MMRs
assert_eq!(pmmr::n_leaves(1), 1);
assert_eq!(pmmr::n_leaves(2), 2);
assert_eq!(pmmr::n_leaves(3), 2);
assert_eq!(pmmr::n_leaves(4), 3);
assert_eq!(pmmr::n_leaves(5), 4);
assert_eq!(pmmr::n_leaves(6), 4);
assert_eq!(pmmr::n_leaves(7), 4);
assert_eq!(pmmr::n_leaves(8), 5);
assert_eq!(pmmr::n_leaves(9), 6);
assert_eq!(pmmr::n_leaves(10), 6);
}
/// Find parent and sibling positions for various node positions.
#[test]
fn various_families() {
// 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3
assert_eq!(pmmr::family(1), (3, 2));
assert_eq!(pmmr::family(2), (3, 1));
assert_eq!(pmmr::family(3), (7, 6));
assert_eq!(pmmr::family(4), (6, 5));
assert_eq!(pmmr::family(5), (6, 4));
assert_eq!(pmmr::family(6), (7, 3));
assert_eq!(pmmr::family(7), (15, 14));
assert_eq!(pmmr::family(1_000), (1_001, 997));
}
#[test]
fn test_paths() {
assert_eq!(pmmr::path(1, 1), [1]);
assert_eq!(pmmr::path(1, 3), [1, 3]);
assert_eq!(pmmr::path(2, 3), [2, 3]);
assert_eq!(pmmr::path(4, 16), [4, 6, 7, 15]);
}
#[test]
fn test_is_left_sibling() {
assert_eq!(pmmr::is_left_sibling(1), true);
assert_eq!(pmmr::is_left_sibling(2), false);
assert_eq!(pmmr::is_left_sibling(3), true);
}
#[test]
fn various_branches() {
// the two leaf nodes in a 3 node tree (height 1)
assert_eq!(pmmr::family_branch(1, 3), [(3, 2)]);
assert_eq!(pmmr::family_branch(2, 3), [(3, 1)]);
// the root node in a 3 node tree
assert_eq!(pmmr::family_branch(3, 3), []);
// leaf node in a larger tree of 7 nodes (height 2)
assert_eq!(pmmr::family_branch(1, 7), [(3, 2), (7, 6)]);
// note these only go as far up as the local peak, not necessarily the single
// root
assert_eq!(pmmr::family_branch(1, 4), [(3, 2)]);
// pos 4 in a tree of size 4 is a local peak
assert_eq!(pmmr::family_branch(4, 4), []);
// pos 4 in a tree of size 5 is also still a local peak
assert_eq!(pmmr::family_branch(4, 5), []);
// pos 4 in a tree of size 6 has a parent and a sibling
assert_eq!(pmmr::family_branch(4, 6), [(6, 5)]);
// a tree of size 7 is all under a single root
assert_eq!(pmmr::family_branch(4, 7), [(6, 5), (7, 3)]);
// ok now for a more realistic one, a tree with over a million nodes in it
// find the "family path" back up the tree from a leaf node at 0
// Note: the first two entries in the branch are consistent with a small 7 node
// tree Note: each sibling is on the left branch, this is an example of the
// largest possible list of peaks before we start combining them into larger
// peaks.
assert_eq!(
pmmr::family_branch(1, 1_049_000),
[
(3, 2),
(7, 6),
(15, 14),
(31, 30),
(63, 62),
(127, 126),
(255, 254),
(511, 510),
(1023, 1022),
(2047, 2046),
(4095, 4094),
(8191, 8190),
(16383, 16382),
(32767, 32766),
(65535, 65534),
(131071, 131070),
(262143, 262142),
(524287, 524286),
(1048575, 1048574),
]
);
}
#[test]
fn some_peaks() {
// 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3
let empty: Vec<u64> = vec![];
// make sure we handle an empty MMR correctly
assert_eq!(pmmr::peaks(0), empty);
// and various non-empty MMRs
assert_eq!(pmmr::peaks(1), [1]);
assert_eq!(pmmr::peaks(2), empty);
assert_eq!(pmmr::peaks(3), [3]);
assert_eq!(pmmr::peaks(4), [3, 4]);
assert_eq!(pmmr::peaks(5), empty);
assert_eq!(pmmr::peaks(6), empty);
assert_eq!(pmmr::peaks(7), [7]);
assert_eq!(pmmr::peaks(8), [7, 8]);
assert_eq!(pmmr::peaks(9), empty);
assert_eq!(pmmr::peaks(10), [7, 10]);
assert_eq!(pmmr::peaks(11), [7, 10, 11]);
assert_eq!(pmmr::peaks(22), [15, 22]);
assert_eq!(pmmr::peaks(32), [31, 32]);
assert_eq!(pmmr::peaks(35), [31, 34, 35]);
assert_eq!(pmmr::peaks(42), [31, 38, 41, 42]);
// large realistic example with almost 1.5 million nodes
// note the distance between peaks decreases toward the right (trees get
// smaller)
assert_eq!(
pmmr::peaks(1048555),
[
524287, 786430, 917501, 983036, 1015803, 1032186, 1040377, 1044472, 1046519, 1047542,
1048053, 1048308, 1048435, 1048498, 1048529, 1048544, 1048551, 1048554, 1048555,
],
);
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct TestElem([u32; 4]);
impl PMMRable for TestElem {
fn len() -> usize {
16
}
}
impl Writeable for TestElem {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
writer.write_u32(self.0[0])?;
writer.write_u32(self.0[1])?;
writer.write_u32(self.0[2])?;
writer.write_u32(self.0[3])
}
}
impl Readable for TestElem {
fn read(reader: &mut Reader) -> Result<TestElem, Error> {
Ok(TestElem([
reader.read_u32()?,
reader.read_u32()?,
reader.read_u32()?,
reader.read_u32()?,
]))
}
}
#[test]
fn empty_merkle_proof() {
let proof = MerkleProof::empty();
assert_eq!(proof.verify(), false);
}
#[test]
fn pmmr_merkle_proof() {
// 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3
let mut ba = VecBackend::new();
let mut pmmr = PMMR::new(&mut ba);
pmmr.push(TestElem([0, 0, 0, 1])).unwrap();
assert_eq!(pmmr.last_pos, 1);
let proof = pmmr.merkle_proof(1).unwrap();
let root = pmmr.root();
assert_eq!(proof.peaks, [root]);
assert!(proof.path.is_empty());
assert!(proof.verify());
// push two more elements into the PMMR
pmmr.push(TestElem([0, 0, 0, 2])).unwrap();
pmmr.push(TestElem([0, 0, 0, 3])).unwrap();
assert_eq!(pmmr.last_pos, 4);
let proof1 = pmmr.merkle_proof(1).unwrap();
assert_eq!(proof1.peaks.len(), 2);
assert_eq!(proof1.path.len(), 1);
assert!(proof1.verify());
let proof2 = pmmr.merkle_proof(2).unwrap();
assert_eq!(proof2.peaks.len(), 2);
assert_eq!(proof2.path.len(), 1);
assert!(proof2.verify());
// check that we cannot generate a merkle proof for pos 3 (not a leaf node)
assert_eq!(
pmmr.merkle_proof(3).err(),
Some(format!("not a leaf at pos 3"))
);
let proof4 = pmmr.merkle_proof(4).unwrap();
assert_eq!(proof4.peaks.len(), 2);
assert!(proof4.path.is_empty());
assert!(proof4.verify());
// now add a few more elements to the PMMR to build a larger merkle proof
for x in 4..1000 {
pmmr.push(TestElem([0, 0, 0, x])).unwrap();
}
let proof = pmmr.merkle_proof(1).unwrap();
assert_eq!(proof.peaks.len(), 8);
assert_eq!(proof.path.len(), 9);
assert!(proof.verify());
}
#[test]
fn pmmr_merkle_proof_prune_and_rewind() {
let mut ba = VecBackend::new();
let mut pmmr = PMMR::new(&mut ba);
pmmr.push(TestElem([0, 0, 0, 1])).unwrap();
pmmr.push(TestElem([0, 0, 0, 2])).unwrap();
let proof = pmmr.merkle_proof(2).unwrap();
// now prune an element and check we can still generate
// the correct Merkle proof for the other element (after sibling pruned)
pmmr.prune(1).unwrap();
let proof_2 = pmmr.merkle_proof(2).unwrap();
assert_eq!(proof, proof_2);
}
#[test]
fn merkle_proof_ser_deser() {
let mut ba = VecBackend::new();
let mut pmmr = PMMR::new(&mut ba);
for x in 0..15 {
pmmr.push(TestElem([0, 0, 0, x])).unwrap();
}
let proof = pmmr.merkle_proof(9).unwrap();
assert!(proof.verify());
let mut vec = Vec::new();
ser::serialize(&mut vec, &proof).expect("serialization failed");
let proof_2: MerkleProof = ser::deserialize(&mut &vec[..]).unwrap();
assert_eq!(proof, proof_2);
}
#[test]
#[allow(unused_variables)]
fn pmmr_push_root() {
let elems = [
TestElem([0, 0, 0, 1]),
TestElem([0, 0, 0, 2]),
TestElem([0, 0, 0, 3]),
TestElem([0, 0, 0, 4]),
TestElem([0, 0, 0, 5]),
TestElem([0, 0, 0, 6]),
TestElem([0, 0, 0, 7]),
TestElem([0, 0, 0, 8]),
TestElem([1, 0, 0, 0]),
];
let mut ba = VecBackend::new();
let mut pmmr = PMMR::new(&mut ba);
// one element
pmmr.push(elems[0]).unwrap();
pmmr.dump(false);
let pos_0 = elems[0].hash_with_index(0);
assert_eq!(pmmr.peaks(), vec![pos_0]);
assert_eq!(pmmr.root(), pos_0);
assert_eq!(pmmr.unpruned_size(), 1);
// two elements
pmmr.push(elems[1]).unwrap();
pmmr.dump(false);
let pos_1 = elems[1].hash_with_index(1);
let pos_2 = (pos_0, pos_1).hash_with_index(2);
assert_eq!(pmmr.peaks(), vec![pos_2]);
assert_eq!(pmmr.root(), pos_2);
assert_eq!(pmmr.unpruned_size(), 3);
// three elements
pmmr.push(elems[2]).unwrap();
pmmr.dump(false);
let pos_3 = elems[2].hash_with_index(3);
assert_eq!(pmmr.peaks(), vec![pos_2, pos_3]);
assert_eq!(pmmr.root(), (pos_2, pos_3).hash_with_index(4));
assert_eq!(pmmr.unpruned_size(), 4);
// four elements
pmmr.push(elems[3]).unwrap();
pmmr.dump(false);
let pos_4 = elems[3].hash_with_index(4);
let pos_5 = (pos_3, pos_4).hash_with_index(5);
let pos_6 = (pos_2, pos_5).hash_with_index(6);
assert_eq!(pmmr.peaks(), vec![pos_6]);
assert_eq!(pmmr.root(), pos_6);
assert_eq!(pmmr.unpruned_size(), 7);
// five elements
pmmr.push(elems[4]).unwrap();
pmmr.dump(false);
let pos_7 = elems[4].hash_with_index(7);
assert_eq!(pmmr.peaks(), vec![pos_6, pos_7]);
assert_eq!(pmmr.root(), (pos_6, pos_7).hash_with_index(8));
assert_eq!(pmmr.unpruned_size(), 8);
// six elements
pmmr.push(elems[5]).unwrap();
let pos_8 = elems[5].hash_with_index(8);
let pos_9 = (pos_7, pos_8).hash_with_index(9);
assert_eq!(pmmr.peaks(), vec![pos_6, pos_9]);
assert_eq!(pmmr.root(), (pos_6, pos_9).hash_with_index(10));
assert_eq!(pmmr.unpruned_size(), 10);
// seven elements
pmmr.push(elems[6]).unwrap();
let pos_10 = elems[6].hash_with_index(10);
assert_eq!(pmmr.peaks(), vec![pos_6, pos_9, pos_10]);
assert_eq!(
pmmr.root(),
(pos_6, (pos_9, pos_10).hash_with_index(11)).hash_with_index(11)
);
assert_eq!(pmmr.unpruned_size(), 11);
// 001001200100123
// eight elements
pmmr.push(elems[7]).unwrap();
let pos_11 = elems[7].hash_with_index(11);
let pos_12 = (pos_10, pos_11).hash_with_index(12);
let pos_13 = (pos_9, pos_12).hash_with_index(13);
let pos_14 = (pos_6, pos_13).hash_with_index(14);
assert_eq!(pmmr.peaks(), vec![pos_14]);
assert_eq!(pmmr.root(), pos_14);
assert_eq!(pmmr.unpruned_size(), 15);
// nine elements
pmmr.push(elems[8]).unwrap();
let pos_15 = elems[8].hash_with_index(15);
assert_eq!(pmmr.peaks(), vec![pos_14, pos_15]);
assert_eq!(pmmr.root(), (pos_14, pos_15).hash_with_index(16));
assert_eq!(pmmr.unpruned_size(), 16);
}
#[test]
fn pmmr_get_last_n_insertions() {
let elems = [
TestElem([0, 0, 0, 1]),
TestElem([0, 0, 0, 2]),
TestElem([0, 0, 0, 3]),
TestElem([0, 0, 0, 4]),
TestElem([0, 0, 0, 5]),
TestElem([0, 0, 0, 6]),
TestElem([0, 0, 0, 7]),
TestElem([0, 0, 0, 8]),
TestElem([1, 0, 0, 0]),
];
let mut ba = VecBackend::new();
let mut pmmr = PMMR::new(&mut ba);
// test when empty
let res = pmmr.get_last_n_insertions(19);
assert!(res.len() == 0);
pmmr.push(elems[0]).unwrap();
let res = pmmr.get_last_n_insertions(19);
assert!(res.len() == 1);
pmmr.push(elems[1]).unwrap();
let res = pmmr.get_last_n_insertions(12);
assert!(res.len() == 2);
pmmr.push(elems[2]).unwrap();
let res = pmmr.get_last_n_insertions(2);
assert!(res.len() == 2);
pmmr.push(elems[3]).unwrap();
let res = pmmr.get_last_n_insertions(19);
assert!(res.len() == 4);
pmmr.push(elems[5]).unwrap();
pmmr.push(elems[6]).unwrap();
pmmr.push(elems[7]).unwrap();
pmmr.push(elems[8]).unwrap();
let res = pmmr.get_last_n_insertions(7);
assert!(res.len() == 7);
}
#[test]
#[allow(unused_variables)]
fn pmmr_prune() {
let elems = [
TestElem([0, 0, 0, 1]),
TestElem([0, 0, 0, 2]),
TestElem([0, 0, 0, 3]),
TestElem([0, 0, 0, 4]),
TestElem([0, 0, 0, 5]),
TestElem([0, 0, 0, 6]),
TestElem([0, 0, 0, 7]),
TestElem([0, 0, 0, 8]),
TestElem([1, 0, 0, 0]),
];
let orig_root: Hash;
let sz: u64;
let mut ba = VecBackend::new();
{
let mut pmmr = PMMR::new(&mut ba);
for elem in &elems[..] {
pmmr.push(*elem).unwrap();
}
orig_root = pmmr.root();
sz = pmmr.unpruned_size();
}
// First check the initial numbers of elements.
assert_eq!(ba.elems.len(), 16);
assert_eq!(ba.remove_list.len(), 0);
// pruning a leaf with no parent should do nothing
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut ba, sz);
pmmr.prune(16).unwrap();
assert_eq!(orig_root, pmmr.root());
}
assert_eq!(ba.elems.len(), 16);
assert_eq!(ba.remove_list.len(), 1);
// pruning leaves with no shared parent just removes 1 element
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut ba, sz);
pmmr.prune(2).unwrap();
assert_eq!(orig_root, pmmr.root());
}
assert_eq!(ba.elems.len(), 16);
assert_eq!(ba.remove_list.len(), 2);
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut ba, sz);
pmmr.prune(4).unwrap();
assert_eq!(orig_root, pmmr.root());
}
assert_eq!(ba.elems.len(), 16);
assert_eq!(ba.remove_list.len(), 3);
// pruning a non-leaf node has no effect
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut ba, sz);
pmmr.prune(3).unwrap_err();
assert_eq!(orig_root, pmmr.root());
}
assert_eq!(ba.elems.len(), 16);
assert_eq!(ba.remove_list.len(), 3);
// TODO - no longer true (leaves only now) - pruning sibling removes subtree
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut ba, sz);
pmmr.prune(5).unwrap();
assert_eq!(orig_root, pmmr.root());
}
assert_eq!(ba.elems.len(), 16);
assert_eq!(ba.remove_list.len(), 4);
// TODO - no longeer true (leaves only now) - pruning all leaves under level >1
// removes all subtree
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut ba, sz);
pmmr.prune(1).unwrap();
assert_eq!(orig_root, pmmr.root());
}
assert_eq!(ba.elems.len(), 16);
assert_eq!(ba.remove_list.len(), 5);
// pruning everything should only leave us with a single peak
{
let mut pmmr: PMMR<TestElem, _> = PMMR::at(&mut ba, sz);
for n in 1..16 {
let _ = pmmr.prune(n);
}
assert_eq!(orig_root, pmmr.root());
}
assert_eq!(ba.elems.len(), 16);
assert_eq!(ba.remove_list.len(), 9);
}
#[test]
fn check_all_ones() {
for i in 0..1000000 {
assert_eq!(old_all_ones(i), pmmr::all_ones(i));
}
}
// Check if the binary representation of a number is all ones.
fn old_all_ones(num: u64) -> bool {
if num == 0 {
return false;
}
let mut bit = 1;
while num >= bit {
if num & bit == 0 {
return false;
}
bit = bit << 1;
}
true
}
#[test]
fn check_most_significant_pos() {
for i in 0u64..1000000 {
assert_eq!(old_most_significant_pos(i), pmmr::most_significant_pos(i));
}
}
// Get the position of the most significant bit in a number.
fn old_most_significant_pos(num: u64) -> u64 {
let mut pos = 0;
let mut bit = 1;
while num >= bit {
bit = bit << 1;
pos += 1;
}
pos
}
#[test]
fn check_insertion_to_pmmr_index() {
assert_eq!(pmmr::insertion_to_pmmr_index(1), 1);
assert_eq!(pmmr::insertion_to_pmmr_index(2), 2);
assert_eq!(pmmr::insertion_to_pmmr_index(3), 4);
assert_eq!(pmmr::insertion_to_pmmr_index(4), 5);
assert_eq!(pmmr::insertion_to_pmmr_index(5), 8);
assert_eq!(pmmr::insertion_to_pmmr_index(6), 9);
assert_eq!(pmmr::insertion_to_pmmr_index(7), 11);
assert_eq!(pmmr::insertion_to_pmmr_index(8), 12);
}
#[test]
fn check_elements_from_insertion_index() {
let mut ba = VecBackend::new();
let mut pmmr = PMMR::new(&mut ba);
for x in 1..1000 {
pmmr.push(TestElem([0, 0, 0, x])).unwrap();
}
// Normal case
let res = pmmr.elements_from_insertion_index(1, 100);
assert_eq!(res.0, 100);
assert_eq!(res.1.len(), 100);
assert_eq!(res.1[0].0[3], 1);
assert_eq!(res.1[99].0[3], 100);
// middle of pack
let res = pmmr.elements_from_insertion_index(351, 70);
assert_eq!(res.0, 420);
assert_eq!(res.1.len(), 70);
assert_eq!(res.1[0].0[3], 351);
assert_eq!(res.1[69].0[3], 420);
// past the end
let res = pmmr.elements_from_insertion_index(650, 1000);
assert_eq!(res.0, 999);
assert_eq!(res.1.len(), 350);
assert_eq!(res.1[0].0[3], 650);
assert_eq!(res.1[349].0[3], 999);
// pruning a few nodes should get consistent results
pmmr.prune(pmmr::insertion_to_pmmr_index(650)).unwrap();
pmmr.prune(pmmr::insertion_to_pmmr_index(651)).unwrap();
pmmr.prune(pmmr::insertion_to_pmmr_index(800)).unwrap();
pmmr.prune(pmmr::insertion_to_pmmr_index(900)).unwrap();
pmmr.prune(pmmr::insertion_to_pmmr_index(998)).unwrap();
let res = pmmr.elements_from_insertion_index(650, 1000);
assert_eq!(res.0, 999);
assert_eq!(res.1.len(), 345);
assert_eq!(res.1[0].0[3], 652);
assert_eq!(res.1[344].0[3], 999);
}