mirror of
https://github.com/mimblewimble/grin.git
synced 2025-01-21 19:41:08 +03:00
e93b380a06
* adding optional mmr index to key ids * rustfmt * update index * add mmr index to output display * change restore to match on commit instead of ID, add extensive restore/check tests for multiple wallets using same seed * rustfmt * ensure check restores unknown accounts as well * rustfmt * remove storage of commit from wallet
521 lines
14 KiB
Rust
521 lines
14 KiB
Rust
// Copyright 2018 The Grin Developers
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
//! core::libtx specific tests
|
|
use self::core::core::transaction;
|
|
use self::core::libtx::{aggsig, proof};
|
|
use self::keychain::{BlindSum, BlindingFactor, ExtKeychain, Keychain};
|
|
use self::util::secp;
|
|
use self::util::secp::key::{PublicKey, SecretKey};
|
|
use self::wallet::libwallet::types::Context;
|
|
use self::wallet::{EncryptedWalletSeed, WalletSeed};
|
|
use grin_core as core;
|
|
use grin_keychain as keychain;
|
|
use grin_util as util;
|
|
use grin_wallet as wallet;
|
|
use rand::thread_rng;
|
|
|
|
fn kernel_sig_msg() -> secp::Message {
|
|
transaction::kernel_sig_msg(0, 0, transaction::KernelFeatures::Plain).unwrap()
|
|
}
|
|
|
|
#[test]
|
|
fn aggsig_sender_receiver_interaction() {
|
|
let sender_keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
let receiver_keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
|
|
// Calculate the kernel excess here for convenience.
|
|
// Normally this would happen during transaction building.
|
|
let kernel_excess = {
|
|
let id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let skey1 = sender_keychain.derive_key(0, &id1).unwrap();
|
|
let skey2 = receiver_keychain.derive_key(0, &id1).unwrap();
|
|
|
|
let keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
let blinding_factor = keychain
|
|
.blind_sum(
|
|
&BlindSum::new()
|
|
.sub_blinding_factor(BlindingFactor::from_secret_key(skey1))
|
|
.add_blinding_factor(BlindingFactor::from_secret_key(skey2)),
|
|
)
|
|
.unwrap();
|
|
|
|
keychain
|
|
.secp()
|
|
.commit(0, blinding_factor.secret_key(&keychain.secp()).unwrap())
|
|
.unwrap()
|
|
};
|
|
|
|
let s_cx;
|
|
let mut rx_cx;
|
|
// sender starts the tx interaction
|
|
let (sender_pub_excess, _sender_pub_nonce) = {
|
|
let keychain = sender_keychain.clone();
|
|
let id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let skey = keychain.derive_key(0, &id1).unwrap();
|
|
|
|
// dealing with an input here so we need to negate the blinding_factor
|
|
// rather than use it as is
|
|
let bs = BlindSum::new();
|
|
let blinding_factor = keychain
|
|
.blind_sum(&bs.sub_blinding_factor(BlindingFactor::from_secret_key(skey)))
|
|
.unwrap();
|
|
|
|
let blind = blinding_factor.secret_key(&keychain.secp()).unwrap();
|
|
|
|
s_cx = Context::new(&keychain.secp(), blind);
|
|
s_cx.get_public_keys(&keychain.secp())
|
|
};
|
|
|
|
let pub_nonce_sum;
|
|
let pub_key_sum;
|
|
// receiver receives partial tx
|
|
let (receiver_pub_excess, _receiver_pub_nonce, rx_sig_part) = {
|
|
let keychain = receiver_keychain.clone();
|
|
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
|
|
// let blind = blind_sum.secret_key(&keychain.secp())?;
|
|
let blind = keychain.derive_key(0, &key_id).unwrap();
|
|
|
|
rx_cx = Context::new(&keychain.secp(), blind);
|
|
let (pub_excess, pub_nonce) = rx_cx.get_public_keys(&keychain.secp());
|
|
rx_cx.add_output(&key_id, &None);
|
|
|
|
pub_nonce_sum = PublicKey::from_combination(
|
|
keychain.secp(),
|
|
vec![
|
|
&s_cx.get_public_keys(keychain.secp()).1,
|
|
&rx_cx.get_public_keys(keychain.secp()).1,
|
|
],
|
|
)
|
|
.unwrap();
|
|
|
|
pub_key_sum = PublicKey::from_combination(
|
|
keychain.secp(),
|
|
vec![
|
|
&s_cx.get_public_keys(keychain.secp()).0,
|
|
&rx_cx.get_public_keys(keychain.secp()).0,
|
|
],
|
|
)
|
|
.unwrap();
|
|
|
|
let msg = kernel_sig_msg();
|
|
let sig_part = aggsig::calculate_partial_sig(
|
|
&keychain.secp(),
|
|
&rx_cx.sec_key,
|
|
&rx_cx.sec_nonce,
|
|
&pub_nonce_sum,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
)
|
|
.unwrap();
|
|
(pub_excess, pub_nonce, sig_part)
|
|
};
|
|
|
|
// check the sender can verify the partial signature
|
|
// received in the response back from the receiver
|
|
{
|
|
let keychain = sender_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
let sig_verifies = aggsig::verify_partial_sig(
|
|
&keychain.secp(),
|
|
&rx_sig_part,
|
|
&pub_nonce_sum,
|
|
&receiver_pub_excess,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
);
|
|
assert!(!sig_verifies.is_err());
|
|
}
|
|
|
|
// now sender signs with their key
|
|
let sender_sig_part = {
|
|
let keychain = sender_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
let sig_part = aggsig::calculate_partial_sig(
|
|
&keychain.secp(),
|
|
&s_cx.sec_key,
|
|
&s_cx.sec_nonce,
|
|
&pub_nonce_sum,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
)
|
|
.unwrap();
|
|
sig_part
|
|
};
|
|
|
|
// check the receiver can verify the partial signature
|
|
// received by the sender
|
|
{
|
|
let keychain = receiver_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
let sig_verifies = aggsig::verify_partial_sig(
|
|
&keychain.secp(),
|
|
&sender_sig_part,
|
|
&pub_nonce_sum,
|
|
&sender_pub_excess,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
);
|
|
assert!(!sig_verifies.is_err());
|
|
}
|
|
|
|
// Receiver now builds final signature from sender and receiver parts
|
|
let (final_sig, final_pubkey) = {
|
|
let keychain = receiver_keychain.clone();
|
|
|
|
let msg = kernel_sig_msg();
|
|
let our_sig_part = aggsig::calculate_partial_sig(
|
|
&keychain.secp(),
|
|
&rx_cx.sec_key,
|
|
&rx_cx.sec_nonce,
|
|
&pub_nonce_sum,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
)
|
|
.unwrap();
|
|
|
|
// Receiver now generates final signature from the two parts
|
|
let final_sig = aggsig::add_signatures(
|
|
&keychain.secp(),
|
|
vec![&sender_sig_part, &our_sig_part],
|
|
&pub_nonce_sum,
|
|
)
|
|
.unwrap();
|
|
|
|
// Receiver calculates the final public key (to verify sig later)
|
|
let final_pubkey = PublicKey::from_combination(
|
|
keychain.secp(),
|
|
vec![
|
|
&s_cx.get_public_keys(keychain.secp()).0,
|
|
&rx_cx.get_public_keys(keychain.secp()).0,
|
|
],
|
|
)
|
|
.unwrap();
|
|
|
|
(final_sig, final_pubkey)
|
|
};
|
|
|
|
// Receiver checks the final signature verifies
|
|
{
|
|
let keychain = receiver_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
|
|
// Receiver check the final signature verifies
|
|
let sig_verifies = aggsig::verify_completed_sig(
|
|
&keychain.secp(),
|
|
&final_sig,
|
|
&final_pubkey,
|
|
Some(&final_pubkey),
|
|
&msg,
|
|
);
|
|
assert!(!sig_verifies.is_err());
|
|
}
|
|
|
|
// Check we can verify the sig using the kernel excess
|
|
{
|
|
let keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
let msg = kernel_sig_msg();
|
|
let sig_verifies =
|
|
aggsig::verify_single_from_commit(&keychain.secp(), &final_sig, &msg, &kernel_excess);
|
|
|
|
assert!(!sig_verifies.is_err());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn aggsig_sender_receiver_interaction_offset() {
|
|
let sender_keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
let receiver_keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
|
|
// This is the kernel offset that we use to split the key
|
|
// Summing these at the block level prevents the
|
|
// kernels from being used to reconstruct (or identify) individual transactions
|
|
let kernel_offset = SecretKey::new(&sender_keychain.secp(), &mut thread_rng());
|
|
|
|
// Calculate the kernel excess here for convenience.
|
|
// Normally this would happen during transaction building.
|
|
let kernel_excess = {
|
|
let id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let skey1 = sender_keychain.derive_key(0, &id1).unwrap();
|
|
let skey2 = receiver_keychain.derive_key(0, &id1).unwrap();
|
|
|
|
let keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
let blinding_factor = keychain
|
|
.blind_sum(
|
|
&BlindSum::new()
|
|
.sub_blinding_factor(BlindingFactor::from_secret_key(skey1))
|
|
.add_blinding_factor(BlindingFactor::from_secret_key(skey2))
|
|
// subtract the kernel offset here like as would when
|
|
// verifying a kernel signature
|
|
.sub_blinding_factor(BlindingFactor::from_secret_key(kernel_offset)),
|
|
)
|
|
.unwrap();
|
|
|
|
keychain
|
|
.secp()
|
|
.commit(0, blinding_factor.secret_key(&keychain.secp()).unwrap())
|
|
.unwrap()
|
|
};
|
|
|
|
let s_cx;
|
|
let mut rx_cx;
|
|
// sender starts the tx interaction
|
|
let (sender_pub_excess, _sender_pub_nonce) = {
|
|
let keychain = sender_keychain.clone();
|
|
let id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let skey = keychain.derive_key(0, &id1).unwrap();
|
|
|
|
// dealing with an input here so we need to negate the blinding_factor
|
|
// rather than use it as is
|
|
let blinding_factor = keychain
|
|
.blind_sum(
|
|
&BlindSum::new()
|
|
.sub_blinding_factor(BlindingFactor::from_secret_key(skey))
|
|
// subtract the kernel offset to create an aggsig context
|
|
// with our "split" key
|
|
.sub_blinding_factor(BlindingFactor::from_secret_key(kernel_offset)),
|
|
)
|
|
.unwrap();
|
|
|
|
let blind = blinding_factor.secret_key(&keychain.secp()).unwrap();
|
|
|
|
s_cx = Context::new(&keychain.secp(), blind);
|
|
s_cx.get_public_keys(&keychain.secp())
|
|
};
|
|
|
|
// receiver receives partial tx
|
|
let pub_nonce_sum;
|
|
let pub_key_sum;
|
|
let (receiver_pub_excess, _receiver_pub_nonce, sig_part) = {
|
|
let keychain = receiver_keychain.clone();
|
|
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
|
|
let blind = keychain.derive_key(0, &key_id).unwrap();
|
|
|
|
rx_cx = Context::new(&keychain.secp(), blind);
|
|
let (pub_excess, pub_nonce) = rx_cx.get_public_keys(&keychain.secp());
|
|
rx_cx.add_output(&key_id, &None);
|
|
|
|
pub_nonce_sum = PublicKey::from_combination(
|
|
keychain.secp(),
|
|
vec![
|
|
&s_cx.get_public_keys(keychain.secp()).1,
|
|
&rx_cx.get_public_keys(keychain.secp()).1,
|
|
],
|
|
)
|
|
.unwrap();
|
|
|
|
pub_key_sum = PublicKey::from_combination(
|
|
keychain.secp(),
|
|
vec![
|
|
&s_cx.get_public_keys(keychain.secp()).0,
|
|
&rx_cx.get_public_keys(keychain.secp()).0,
|
|
],
|
|
)
|
|
.unwrap();
|
|
|
|
let msg = kernel_sig_msg();
|
|
let sig_part = aggsig::calculate_partial_sig(
|
|
&keychain.secp(),
|
|
&rx_cx.sec_key,
|
|
&rx_cx.sec_nonce,
|
|
&pub_nonce_sum,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
)
|
|
.unwrap();
|
|
(pub_excess, pub_nonce, sig_part)
|
|
};
|
|
|
|
// check the sender can verify the partial signature
|
|
// received in the response back from the receiver
|
|
{
|
|
let keychain = sender_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
let sig_verifies = aggsig::verify_partial_sig(
|
|
&keychain.secp(),
|
|
&sig_part,
|
|
&pub_nonce_sum,
|
|
&receiver_pub_excess,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
);
|
|
assert!(!sig_verifies.is_err());
|
|
}
|
|
|
|
// now sender signs with their key
|
|
let sender_sig_part = {
|
|
let keychain = sender_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
let sig_part = aggsig::calculate_partial_sig(
|
|
&keychain.secp(),
|
|
&s_cx.sec_key,
|
|
&s_cx.sec_nonce,
|
|
&pub_nonce_sum,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
)
|
|
.unwrap();
|
|
sig_part
|
|
};
|
|
|
|
// check the receiver can verify the partial signature
|
|
// received by the sender
|
|
{
|
|
let keychain = receiver_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
let sig_verifies = aggsig::verify_partial_sig(
|
|
&keychain.secp(),
|
|
&sender_sig_part,
|
|
&pub_nonce_sum,
|
|
&sender_pub_excess,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
);
|
|
assert!(!sig_verifies.is_err());
|
|
}
|
|
|
|
// Receiver now builds final signature from sender and receiver parts
|
|
let (final_sig, final_pubkey) = {
|
|
let keychain = receiver_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
let our_sig_part = aggsig::calculate_partial_sig(
|
|
&keychain.secp(),
|
|
&rx_cx.sec_key,
|
|
&rx_cx.sec_nonce,
|
|
&pub_nonce_sum,
|
|
Some(&pub_key_sum),
|
|
&msg,
|
|
)
|
|
.unwrap();
|
|
|
|
// Receiver now generates final signature from the two parts
|
|
let final_sig = aggsig::add_signatures(
|
|
&keychain.secp(),
|
|
vec![&sender_sig_part, &our_sig_part],
|
|
&pub_nonce_sum,
|
|
)
|
|
.unwrap();
|
|
|
|
// Receiver calculates the final public key (to verify sig later)
|
|
let final_pubkey = PublicKey::from_combination(
|
|
keychain.secp(),
|
|
vec![
|
|
&s_cx.get_public_keys(keychain.secp()).0,
|
|
&rx_cx.get_public_keys(keychain.secp()).0,
|
|
],
|
|
)
|
|
.unwrap();
|
|
|
|
(final_sig, final_pubkey)
|
|
};
|
|
|
|
// Receiver checks the final signature verifies
|
|
{
|
|
let keychain = receiver_keychain.clone();
|
|
let msg = kernel_sig_msg();
|
|
|
|
// Receiver check the final signature verifies
|
|
let sig_verifies = aggsig::verify_completed_sig(
|
|
&keychain.secp(),
|
|
&final_sig,
|
|
&final_pubkey,
|
|
Some(&final_pubkey),
|
|
&msg,
|
|
);
|
|
assert!(!sig_verifies.is_err());
|
|
}
|
|
|
|
// Check we can verify the sig using the kernel excess
|
|
{
|
|
let keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
let msg = kernel_sig_msg();
|
|
let sig_verifies =
|
|
aggsig::verify_single_from_commit(&keychain.secp(), &final_sig, &msg, &kernel_excess);
|
|
|
|
assert!(!sig_verifies.is_err());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_rewind_range_proof() {
|
|
let keychain = ExtKeychain::from_random_seed(true).unwrap();
|
|
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
|
|
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
|
|
let commit = keychain.commit(5, &key_id).unwrap();
|
|
let extra_data = [99u8; 64];
|
|
|
|
let proof = proof::create(
|
|
&keychain,
|
|
5,
|
|
&key_id,
|
|
commit,
|
|
Some(extra_data.to_vec().clone()),
|
|
)
|
|
.unwrap();
|
|
let proof_info =
|
|
proof::rewind(&keychain, commit, Some(extra_data.to_vec().clone()), proof).unwrap();
|
|
|
|
assert_eq!(proof_info.success, true);
|
|
assert_eq!(proof_info.value, 5);
|
|
assert_eq!(proof_info.message.as_bytes(), key_id.serialize_path());
|
|
|
|
// cannot rewind with a different commit
|
|
let commit2 = keychain.commit(5, &key_id2).unwrap();
|
|
let proof_info =
|
|
proof::rewind(&keychain, commit2, Some(extra_data.to_vec().clone()), proof).unwrap();
|
|
assert_eq!(proof_info.success, false);
|
|
assert_eq!(proof_info.value, 0);
|
|
assert_eq!(proof_info.message, secp::pedersen::ProofMessage::empty());
|
|
|
|
// cannot rewind with a commitment to a different value
|
|
let commit3 = keychain.commit(4, &key_id).unwrap();
|
|
let proof_info =
|
|
proof::rewind(&keychain, commit3, Some(extra_data.to_vec().clone()), proof).unwrap();
|
|
assert_eq!(proof_info.success, false);
|
|
assert_eq!(proof_info.value, 0);
|
|
|
|
// cannot rewind with wrong extra committed data
|
|
let commit3 = keychain.commit(4, &key_id).unwrap();
|
|
let wrong_extra_data = [98u8; 64];
|
|
let _should_err = proof::rewind(
|
|
&keychain,
|
|
commit3,
|
|
Some(wrong_extra_data.to_vec().clone()),
|
|
proof,
|
|
)
|
|
.unwrap();
|
|
|
|
assert_eq!(proof_info.success, false);
|
|
assert_eq!(proof_info.value, 0);
|
|
}
|
|
|
|
#[test]
|
|
fn wallet_seed_encrypt() {
|
|
let password = "passwoid";
|
|
let wallet_seed = WalletSeed::init_new(32);
|
|
let mut enc_wallet_seed = EncryptedWalletSeed::from_seed(&wallet_seed, password).unwrap();
|
|
println!("EWS: {:?}", enc_wallet_seed);
|
|
let decrypted_wallet_seed = enc_wallet_seed.decrypt(password).unwrap();
|
|
assert_eq!(wallet_seed, decrypted_wallet_seed);
|
|
|
|
// Wrong password
|
|
let decrypted_wallet_seed = enc_wallet_seed.decrypt("");
|
|
assert!(decrypted_wallet_seed.is_err());
|
|
|
|
// Wrong nonce
|
|
enc_wallet_seed.nonce = "wrongnonce".to_owned();
|
|
let decrypted_wallet_seed = enc_wallet_seed.decrypt(password);
|
|
assert!(decrypted_wallet_seed.is_err());
|
|
}
|