grin/pool/tests/transaction_pool.rs
2019-04-16 11:24:43 +01:00

460 lines
15 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod common;
use self::core::core::verifier_cache::LruVerifierCache;
use self::core::core::{transaction, Block, BlockHeader, Weighting};
use self::core::libtx;
use self::core::pow::Difficulty;
use self::keychain::{ExtKeychain, Keychain};
use self::util::RwLock;
use crate::common::*;
use grin_core as core;
use grin_keychain as keychain;
use grin_util as util;
use std::sync::Arc;
/// Test we can add some txs to the pool (both stempool and txpool).
#[test]
fn test_the_transaction_pool() {
let keychain: ExtKeychain = Keychain::from_random_seed(false).unwrap();
let db_root = ".grin_transaction_pool".to_string();
clean_output_dir(db_root.clone());
let chain = Arc::new(ChainAdapter::init(db_root.clone()).unwrap());
let verifier_cache = Arc::new(RwLock::new(LruVerifierCache::new()));
// Initialize a new pool with our chain adapter.
let pool = RwLock::new(test_setup(chain.clone(), verifier_cache.clone()));
let header = {
let height = 1;
let key_id = ExtKeychain::derive_key_id(1, height as u32, 0, 0, 0);
let reward = libtx::reward::output(&keychain, &key_id, 0, false).unwrap();
let block = Block::new(&BlockHeader::default(), vec![], Difficulty::min(), reward).unwrap();
chain.update_db_for_block(&block);
block.header
};
// Now create tx to spend a coinbase, giving us some useful outputs for testing
// with.
let initial_tx = {
test_transaction_spending_coinbase(
&keychain,
&header,
vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400],
)
};
// Add this tx to the pool (stem=false, direct to txpool).
{
let mut write_pool = pool.write();
write_pool
.add_to_pool(test_source(), initial_tx, false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 1);
}
// Test adding a tx that "double spends" an output currently spent by a tx
// already in the txpool. In this case we attempt to spend the original coinbase twice.
{
let tx = test_transaction_spending_coinbase(&keychain, &header, vec![501]);
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), tx, false, &header)
.is_err());
}
// tx1 spends some outputs from the initial test tx.
let tx1 = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
// tx2 spends some outputs from both tx1 and the initial test tx.
let tx2 = test_transaction(&keychain, vec![499, 700], vec![498]);
// Take a write lock and add a couple of tx entries to the pool.
{
let mut write_pool = pool.write();
// Check we have a single initial tx in the pool.
assert_eq!(write_pool.total_size(), 1);
// First, add a simple tx directly to the txpool (stem = false).
write_pool
.add_to_pool(test_source(), tx1.clone(), false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 2);
// Add another tx spending outputs from the previous tx.
write_pool
.add_to_pool(test_source(), tx2.clone(), false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 3);
}
// Test adding the exact same tx multiple times (same kernel signature).
// This will fail for stem=false during tx aggregation due to duplicate
// outputs and duplicate kernels.
{
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), tx1.clone(), false, &header)
.is_err());
}
// Test adding a duplicate tx with the same input and outputs.
// Note: not the *same* tx, just same underlying inputs/outputs.
{
let tx1a = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), tx1a, false, &header)
.is_err());
}
// Test adding a tx attempting to spend a non-existent output.
{
let bad_tx = test_transaction(&keychain, vec![10_001], vec![10_000]);
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), bad_tx, false, &header)
.is_err());
}
// Test adding a tx that would result in a duplicate output (conflicts with
// output from tx2). For reasons of security all outputs in the UTXO set must
// be unique. Otherwise spending one will almost certainly cause the other
// to be immediately stolen via a "replay" tx.
{
let tx = test_transaction(&keychain, vec![900], vec![498]);
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), tx, false, &header)
.is_err());
}
// Confirm the tx pool correctly identifies an invalid tx (already spent).
{
let mut write_pool = pool.write();
let tx3 = test_transaction(&keychain, vec![500], vec![497]);
assert!(write_pool
.add_to_pool(test_source(), tx3, false, &header)
.is_err());
assert_eq!(write_pool.total_size(), 3);
}
// Now add a couple of txs to the stempool (stem = true).
{
let mut write_pool = pool.write();
let tx = test_transaction(&keychain, vec![599], vec![598]);
write_pool
.add_to_pool(test_source(), tx, true, &header)
.unwrap();
let tx2 = test_transaction(&keychain, vec![598], vec![597]);
write_pool
.add_to_pool(test_source(), tx2, true, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 3);
assert_eq!(write_pool.stempool.size(), 2);
}
// Check we can take some entries from the stempool and "fluff" them into the
// txpool. This also exercises multi-kernel txs.
{
let mut write_pool = pool.write();
let agg_tx = write_pool
.stempool
.all_transactions_aggregate()
.unwrap()
.unwrap();
assert_eq!(agg_tx.kernels().len(), 2);
write_pool
.add_to_pool(test_source(), agg_tx, false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 4);
assert!(write_pool.stempool.is_empty());
}
// Adding a duplicate tx to the stempool will result in it being fluffed.
// This handles the case of the stem path having a cycle in it.
{
let mut write_pool = pool.write();
let tx = test_transaction(&keychain, vec![597], vec![596]);
write_pool
.add_to_pool(test_source(), tx.clone(), true, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 4);
assert_eq!(write_pool.stempool.size(), 1);
// Duplicate stem tx so fluff, adding it to txpool and removing it from stempool.
write_pool
.add_to_pool(test_source(), tx.clone(), true, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 5);
assert!(write_pool.stempool.is_empty());
}
// Now check we can correctly deaggregate a multi-kernel tx based on current
// contents of the txpool.
// We will do this be adding a new tx to the pool
// that is a superset of a tx already in the pool.
{
let mut write_pool = pool.write();
let tx4 = test_transaction(&keychain, vec![800], vec![799]);
// tx1 and tx2 are already in the txpool (in aggregated form)
// tx4 is the "new" part of this aggregated tx that we care about
let agg_tx = transaction::aggregate(vec![tx1.clone(), tx2.clone(), tx4]).unwrap();
agg_tx
.validate(Weighting::AsTransaction, verifier_cache.clone())
.unwrap();
write_pool
.add_to_pool(test_source(), agg_tx, false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 6);
let entry = write_pool.txpool.entries.last().unwrap();
assert_eq!(entry.tx.kernels().len(), 1);
assert_eq!(entry.src.debug_name, "deagg");
}
// Check we cannot "double spend" an output spent in a previous block.
// We use the initial coinbase output here for convenience.
{
let chain = Arc::new(ChainAdapter::init(db_root.clone()).unwrap());
let verifier_cache = Arc::new(RwLock::new(LruVerifierCache::new()));
// Initialize a new pool with our chain adapter.
let pool = RwLock::new(test_setup(chain.clone(), verifier_cache.clone()));
let header = {
let height = 1;
let key_id = ExtKeychain::derive_key_id(1, height as u32, 0, 0, 0);
let reward = libtx::reward::output(&keychain, &key_id, 0, false).unwrap();
let block =
Block::new(&BlockHeader::default(), vec![], Difficulty::min(), reward).unwrap();
chain.update_db_for_block(&block);
block.header
};
// Now create tx to spend a coinbase, giving us some useful outputs for testing
// with.
let initial_tx = {
test_transaction_spending_coinbase(
&keychain,
&header,
vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400],
)
};
// Add this tx to the pool (stem=false, direct to txpool).
{
let mut write_pool = pool.write();
write_pool
.add_to_pool(test_source(), initial_tx, false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 1);
}
// Test adding a tx that "double spends" an output currently spent by a tx
// already in the txpool. In this case we attempt to spend the original coinbase twice.
{
let tx = test_transaction_spending_coinbase(&keychain, &header, vec![501]);
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), tx, false, &header)
.is_err());
}
// tx1 spends some outputs from the initial test tx.
let tx1 = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
// tx2 spends some outputs from both tx1 and the initial test tx.
let tx2 = test_transaction(&keychain, vec![499, 700], vec![498]);
// Take a write lock and add a couple of tx entries to the pool.
{
let mut write_pool = pool.write();
// Check we have a single initial tx in the pool.
assert_eq!(write_pool.total_size(), 1);
// First, add a simple tx directly to the txpool (stem = false).
write_pool
.add_to_pool(test_source(), tx1.clone(), false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 2);
// Add another tx spending outputs from the previous tx.
write_pool
.add_to_pool(test_source(), tx2.clone(), false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 3);
}
// Test adding the exact same tx multiple times (same kernel signature).
// This will fail for stem=false during tx aggregation due to duplicate
// outputs and duplicate kernels.
{
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), tx1.clone(), false, &header)
.is_err());
}
// Test adding a duplicate tx with the same input and outputs.
// Note: not the *same* tx, just same underlying inputs/outputs.
{
let tx1a = test_transaction(&keychain, vec![500, 600], vec![499, 599]);
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), tx1a, false, &header)
.is_err());
}
// Test adding a tx attempting to spend a non-existent output.
{
let bad_tx = test_transaction(&keychain, vec![10_001], vec![10_000]);
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), bad_tx, false, &header)
.is_err());
}
// Test adding a tx that would result in a duplicate output (conflicts with
// output from tx2). For reasons of security all outputs in the UTXO set must
// be unique. Otherwise spending one will almost certainly cause the other
// to be immediately stolen via a "replay" tx.
{
let tx = test_transaction(&keychain, vec![900], vec![498]);
let mut write_pool = pool.write();
assert!(write_pool
.add_to_pool(test_source(), tx, false, &header)
.is_err());
}
// Confirm the tx pool correctly identifies an invalid tx (already spent).
{
let mut write_pool = pool.write();
let tx3 = test_transaction(&keychain, vec![500], vec![497]);
assert!(write_pool
.add_to_pool(test_source(), tx3, false, &header)
.is_err());
assert_eq!(write_pool.total_size(), 3);
}
// Now add a couple of txs to the stempool (stem = true).
{
let mut write_pool = pool.write();
let tx = test_transaction(&keychain, vec![599], vec![598]);
write_pool
.add_to_pool(test_source(), tx, true, &header)
.unwrap();
let tx2 = test_transaction(&keychain, vec![598], vec![597]);
write_pool
.add_to_pool(test_source(), tx2, true, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 3);
assert_eq!(write_pool.stempool.size(), 2);
}
// Check we can take some entries from the stempool and "fluff" them into the
// txpool. This also exercises multi-kernel txs.
{
let mut write_pool = pool.write();
let agg_tx = write_pool
.stempool
.all_transactions_aggregate()
.unwrap()
.unwrap();
assert_eq!(agg_tx.kernels().len(), 2);
write_pool
.add_to_pool(test_source(), agg_tx, false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 4);
assert!(write_pool.stempool.is_empty());
}
// Adding a duplicate tx to the stempool will result in it being fluffed.
// This handles the case of the stem path having a cycle in it.
{
let mut write_pool = pool.write();
let tx = test_transaction(&keychain, vec![597], vec![596]);
write_pool
.add_to_pool(test_source(), tx.clone(), true, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 4);
assert_eq!(write_pool.stempool.size(), 1);
// Duplicate stem tx so fluff, adding it to txpool and removing it from stempool.
write_pool
.add_to_pool(test_source(), tx.clone(), true, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 5);
assert!(write_pool.stempool.is_empty());
}
// Now check we can correctly deaggregate a multi-kernel tx based on current
// contents of the txpool.
// We will do this be adding a new tx to the pool
// that is a superset of a tx already in the pool.
{
let mut write_pool = pool.write();
let tx4 = test_transaction(&keychain, vec![800], vec![799]);
// tx1 and tx2 are already in the txpool (in aggregated form)
// tx4 is the "new" part of this aggregated tx that we care about
let agg_tx = transaction::aggregate(vec![tx1.clone(), tx2.clone(), tx4]).unwrap();
agg_tx
.validate(Weighting::AsTransaction, verifier_cache.clone())
.unwrap();
write_pool
.add_to_pool(test_source(), agg_tx, false, &header)
.unwrap();
assert_eq!(write_pool.total_size(), 6);
let entry = write_pool.txpool.entries.last().unwrap();
assert_eq!(entry.tx.kernels().len(), 1);
assert_eq!(entry.src.debug_name, "deagg");
}
// Check we cannot "double spend" an output spent in a previous block.
// We use the initial coinbase output here for convenience.
{
let mut write_pool = pool.write();
let double_spend_tx =
{ test_transaction_spending_coinbase(&keychain, &header, vec![1000]) };
// check we cannot add a double spend to the stempool
assert!(write_pool
.add_to_pool(test_source(), double_spend_tx.clone(), true, &header)
.is_err());
// check we cannot add a double spend to the txpool
assert!(write_pool
.add_to_pool(test_source(), double_spend_tx.clone(), false, &header)
.is_err());
}
}
// Cleanup db directory
clean_output_dir(db_root.clone());
}