grin/pool/src/graph.rs
Quentin Le Sceller 8a7eb94759 Update bitflags to ^0.1 (#682)
* Removed unused crates
* Add listconnectedpeers in grin client
* Update bitflags to ^0.1 globally
2018-02-05 19:43:54 +00:00

365 lines
9.8 KiB
Rust

// Copyright 2017 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Base types for the transaction pool's Directed Acyclic Graphs
use std::vec::Vec;
use std::collections::{HashMap, HashSet};
use util::secp::pedersen::Commitment;
use time;
use std::fmt;
use core::core;
use core::core::hash::Hashed;
use core::core::OutputIdentifier;
/// An entry in the transaction pool.
/// These are the vertices of both of the graph structures
#[derive(Debug, PartialEq, Clone)]
pub struct PoolEntry {
// Core data
/// Unique identifier of this pool entry and the corresponding transaction
pub transaction_hash: core::hash::Hash,
// Metadata
/// Size estimate
pub size_estimate: u64,
/// Receive timestamp
pub receive_ts: time::Tm,
}
impl PoolEntry {
/// Create new transaction pool entry
pub fn new(tx: &core::transaction::Transaction) -> PoolEntry {
PoolEntry {
transaction_hash: transaction_identifier(tx),
size_estimate: estimate_transaction_size(tx),
receive_ts: time::now_utc(),
}
}
}
/// TODO guessing this needs implementing
fn estimate_transaction_size(_tx: &core::transaction::Transaction) -> u64 {
0
}
/// An edge connecting graph vertices.
/// For various use cases, one of either the source or destination may be
/// unpopulated
pub struct Edge {
// Source and Destination are the vertex id's, the transaction (kernel)
// hash.
source: Option<core::hash::Hash>,
destination: Option<core::hash::Hash>,
// Output is the output hash which this input/output pairing corresponds
// to.
output: OutputIdentifier,
}
impl Edge {
/// Create new edge
pub fn new(
source: Option<core::hash::Hash>,
destination: Option<core::hash::Hash>,
output: OutputIdentifier,
) -> Edge {
Edge {
source: source,
destination: destination,
output: output,
}
}
/// Create new edge with a source
pub fn with_source(&self, src: Option<core::hash::Hash>) -> Edge {
Edge {
source: src,
destination: self.destination,
output: self.output.clone(),
}
}
/// Create new edge with destination
pub fn with_destination(&self, dst: Option<core::hash::Hash>) -> Edge {
Edge {
source: self.source,
destination: dst,
output: self.output.clone(),
}
}
/// The output_identifier of the edge.
pub fn output(&self) -> OutputIdentifier {
self.output.clone()
}
/// The output commitment of the edge
pub fn output_commitment(&self) -> Commitment {
self.output.commit
}
/// The destination hash of the edge
pub fn destination_hash(&self) -> Option<core::hash::Hash> {
self.destination
}
/// The source hash of the edge
pub fn source_hash(&self) -> Option<core::hash::Hash> {
self.source
}
}
impl fmt::Debug for Edge {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Edge {{source: {:?}, destination: {:?}, commitment: {:?}}}",
self.source,
self.destination,
self.output
)
}
}
/// The generic graph container. Both graphs, the pool and orphans, embed this
/// structure and add additional capability on top of it.
pub struct DirectedGraph {
edges: HashMap<Commitment, Edge>,
vertices: Vec<PoolEntry>,
// A small optimization: keeping roots (vertices with in-degree 0) in a
// separate list makes topological sort a bit faster. (This is true for
// Kahn's, not sure about other implementations)
roots: Vec<PoolEntry>,
}
impl DirectedGraph {
/// Create an empty directed graph
pub fn empty() -> DirectedGraph {
DirectedGraph {
edges: HashMap::new(),
vertices: Vec::new(),
roots: Vec::new(),
}
}
/// Get an edge by its commitment
pub fn get_edge_by_commitment(&self, output_commitment: &Commitment) -> Option<&Edge> {
self.edges.get(output_commitment)
}
/// Remove an edge by its commitment
pub fn remove_edge_by_commitment(&mut self, output_commitment: &Commitment) -> Option<Edge> {
self.edges.remove(output_commitment)
}
/// Remove a vertex by its hash
pub fn remove_vertex(&mut self, tx_hash: core::hash::Hash) -> Option<PoolEntry> {
match self.roots
.iter()
.position(|x| x.transaction_hash == tx_hash)
{
Some(i) => Some(self.roots.swap_remove(i)),
None => match self.vertices
.iter()
.position(|x| x.transaction_hash == tx_hash)
{
Some(i) => Some(self.vertices.swap_remove(i)),
None => None,
},
}
}
/// Promote any non-root vertices to roots based on current edges.
/// For a given tx, if there are no edges with that tx as destination then
/// it is a root.
pub fn update_roots(&mut self) {
let mut new_vertices: Vec<PoolEntry> = vec![];
// first find the set of all destinations from the edges in the graph
// a root is a vertex that is not a destination of any edge
let destinations = self.edges
.values()
.filter_map(|edge| edge.destination)
.collect::<HashSet<_>>();
// now iterate over the current non-root vertices
// and check if it is now a root based on the set of edge destinations
for x in &self.vertices {
if destinations.contains(&x.transaction_hash) {
new_vertices.push(x.clone());
} else {
self.roots.push(x.clone());
}
}
// now update our vertices to reflect the updated list
self.vertices = new_vertices;
}
/// Adds a vertex and a set of incoming edges to the graph.
///
/// The PoolEntry at vertex is added to the graph; depending on the
/// number of incoming edges, the vertex is either added to the vertices
/// or to the roots.
///
/// Outgoing edges must not be included in edges; this method is designed
/// for adding vertices one at a time and only accepts incoming edges as
/// internal edges.
pub fn add_entry(&mut self, vertex: PoolEntry, mut edges: Vec<Edge>) {
if edges.len() == 0 {
self.roots.push(vertex);
} else {
self.vertices.push(vertex);
for edge in edges.drain(..) {
self.edges.insert(edge.output_commitment(), edge);
}
}
}
/// add_vertex_only adds a vertex, meant to be complemented by add_edge_only
/// in cases where delivering a vector of edges is not feasible or efficient
pub fn add_vertex_only(&mut self, vertex: PoolEntry, is_root: bool) {
if is_root {
self.roots.push(vertex);
} else {
self.vertices.push(vertex);
}
}
/// add_edge_only adds an edge
pub fn add_edge_only(&mut self, edge: Edge) {
self.edges.insert(edge.output_commitment(), edge);
}
/// Number of vertices (root + internal)
pub fn len_vertices(&self) -> usize {
self.vertices.len() + self.roots.len()
}
/// Number of root vertices only
pub fn len_roots(&self) -> usize {
self.roots.len()
}
/// Number of edges
pub fn len_edges(&self) -> usize {
self.edges.len()
}
/// Get the current list of roots
pub fn get_roots(&self) -> Vec<core::hash::Hash> {
self.roots.iter().map(|x| x.transaction_hash).collect()
}
/// Get list of all vertices in this graph including the roots
pub fn get_vertices(&self) -> Vec<core::hash::Hash> {
let mut hashes = self.roots
.iter()
.map(|x| x.transaction_hash)
.collect::<Vec<_>>();
let non_root_hashes = self.vertices
.iter()
.map(|x| x.transaction_hash)
.collect::<Vec<_>>();
hashes.extend(&non_root_hashes);
return hashes;
}
}
/// Using transaction merkle_inputs_outputs to calculate a deterministic hash;
/// this hashing mechanism has some ambiguity issues especially around range
/// proofs and any extra data the kernel may cover, but it is used initially
/// for testing purposes.
pub fn transaction_identifier(tx: &core::transaction::Transaction) -> core::hash::Hash {
// core::transaction::merkle_inputs_outputs(&tx.inputs, &tx.outputs)
tx.hash()
}
#[cfg(test)]
mod tests {
use super::*;
use util::secp;
use keychain::Keychain;
use rand;
use core::core::{OutputFeatures, SwitchCommitHash};
#[test]
fn test_add_entry() {
let keychain = Keychain::from_random_seed().unwrap();
let key_id1 = keychain.derive_key_id(1).unwrap();
let key_id2 = keychain.derive_key_id(2).unwrap();
let key_id3 = keychain.derive_key_id(3).unwrap();
let output_commit = keychain.commit(70, &key_id1).unwrap();
let switch_commit = keychain.switch_commit(&key_id1).unwrap();
let switch_commit_hash = SwitchCommitHash::from_switch_commit(
switch_commit,
&keychain,
&key_id1,
);
let inputs = vec![
core::transaction::Input::new(
OutputFeatures::DEFAULT_OUTPUT,
keychain.commit(50, &key_id2).unwrap(),
None,
),
core::transaction::Input::new(
OutputFeatures::DEFAULT_OUTPUT,
keychain.commit(25, &key_id3).unwrap(),
None,
),
];
let msg = secp::pedersen::ProofMessage::empty();
let output = core::transaction::Output {
features: OutputFeatures::DEFAULT_OUTPUT,
commit: output_commit,
switch_commit_hash: switch_commit_hash,
proof: keychain
.range_proof(100, &key_id1, output_commit, msg)
.unwrap(),
};
let outputs = vec![output];
let test_transaction = core::transaction::Transaction::new(inputs, outputs, 5, 0);
let test_pool_entry = PoolEntry::new(&test_transaction);
let incoming_edge_1 = Edge::new(
Some(random_hash()),
Some(core::hash::ZERO_HASH),
OutputIdentifier::from_output(&output),
);
let mut test_graph = DirectedGraph::empty();
test_graph.add_entry(test_pool_entry, vec![incoming_edge_1]);
assert_eq!(test_graph.vertices.len(), 1);
assert_eq!(test_graph.roots.len(), 0);
assert_eq!(test_graph.edges.len(), 1);
}
/// For testing/debugging: a random tx hash
fn random_hash() -> core::hash::Hash {
let hash_bytes: [u8; 32] = rand::random();
core::hash::Hash(hash_bytes)
}
}