grin/core/tests/consensus.rs
Yeastplume 783e4c250d
[WIP] Difficulty Adjustment Updates (#651)
* large updates for mining, fix async mode, will list changes in PR

* reset config and build defaults

* change to difficulty calculations

* tweaking mining params and tests

* tweaking to tests

* including pre-genesis data for difficulty adjustments, adding adjustment scenario tests

* further clarifying next_difficulty function

* moving tests out of consensus.rs

* pow test fix

* changing pre-genesis generation
2018-01-27 07:48:53 +00:00

270 lines
9.7 KiB
Rust

// Copyright 2018 The Grin Developers
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! core consensus.rs tests (separated to de-clutter consensus.rs)
#[macro_use]
extern crate grin_core as core;
extern crate time;
use core::core::target::Difficulty;
use core::global;
use core::consensus::*;
// Builds an iterator for next difficulty calculation with the provided
// constant time interval, difficulty and total length.
fn repeat(interval: u64, diff: u64, len: u64, cur_time:Option<u64>) -> Vec<Result<(u64, Difficulty), TargetError>> {
let cur_time = match cur_time {
Some(t) => t,
None => time::get_time().sec as u64,
};
// watch overflow here, length shouldn't be ridiculous anyhow
assert!(len < std::usize::MAX as u64);
let diffs = vec![Difficulty::from_num(diff); len as usize];
let times = (0..(len as usize)).map(|n| n * interval as usize).rev();
let pairs = times.zip(diffs.iter());
pairs
.map(|(t, d)| Ok((cur_time + t as u64, d.clone())))
.collect::<Vec<_>>()
}
// Creates a new chain with a genesis at a simulated difficulty
fn create_chain_sim(diff: u64) -> Vec<Result<(u64, Difficulty), TargetError>> {
vec![Ok((time::get_time().sec as u64, Difficulty::from_num(diff)))]
}
// Adds another 'block' to the iterator, so to speak, with difficulty calculated
// from the difficulty adjustment at interval seconds from the previous block
fn add_block(interval: u64, chain_sim: Vec<Result<(u64, Difficulty), TargetError>>)
-> Vec<Result<(u64, Difficulty), TargetError>> {
let mut return_chain = chain_sim.clone();
// get last interval
let last_elem = chain_sim.first().as_ref().unwrap().as_ref().unwrap();
return_chain.insert(0, Ok((last_elem.0+interval, last_elem.clone().1)));
let diff = next_difficulty(return_chain.clone()).unwrap();
return_chain[0]=Ok((last_elem.0+interval, diff));
return_chain
}
// Adds another n 'blocks' to the iterator, with difficulty calculated
fn add_block_repeated(interval: u64, chain_sim: Vec<Result<(u64, Difficulty), TargetError>>, iterations: usize)
-> Vec<Result<(u64, Difficulty), TargetError>> {
let mut return_chain = chain_sim.clone();
for _ in 0..iterations {
return_chain = add_block(interval, return_chain.clone());
}
return_chain
}
// Prints the contents of the iterator and its difficulties.. useful for tweaking
fn print_chain_sim(chain_sim: &Vec<Result<(u64, Difficulty), TargetError>>) {
let mut chain_sim=chain_sim.clone();
chain_sim.reverse();
let mut last_time=0;
chain_sim.iter()
.enumerate()
.for_each(|(i, b)| {
let block = b.as_ref().unwrap();
println!("Height: {}, Time: {}, Interval: {}, Next network difficulty:{}",
i, block.0, block.0-last_time, block.1);
last_time=block.0;
});
}
fn repeat_offs(
from: u64,
interval: u64,
diff: u64,
len: u64,
) -> Vec<Result<(u64, Difficulty), TargetError>> {
map_vec!(repeat(interval, diff, len, Some(from)), |e| match e.clone() {
Err(e) => Err(e),
Ok((t, d)) => Ok((t, d)),
})
}
/// Checks different next_target adjustments and difficulty boundaries
#[test]
fn adjustment_scenarios() {
// Use production parameters for genesis diff
global::set_mining_mode(global::ChainTypes::Mainnet);
// Genesis block with initial diff
let chain_sim = create_chain_sim(global::initial_block_difficulty());
// Scenario 1) Hash power is massively over estimated, first block takes an hour
let chain_sim = add_block_repeated(3600, chain_sim, 2);
let chain_sim = add_block_repeated(1800, chain_sim, 2);
let chain_sim = add_block_repeated(900, chain_sim, 10);
println!("*********************************************************");
println!("Scenario 1) Grossly over-estimated genesis difficulty ");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
// Under-estimated difficulty
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_block_repeated(1, chain_sim, 5);
let chain_sim = add_block_repeated(20, chain_sim, 5);
println!("*********************************************************");
println!("Scenario 2) Grossly under-estimated genesis difficulty ");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
let just_enough = (DIFFICULTY_ADJUST_WINDOW + MEDIAN_TIME_WINDOW) as usize;
// Steady difficulty for a good while, then a sudden drop
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_block_repeated(10, chain_sim, just_enough as usize);
let chain_sim = add_block_repeated(600, chain_sim, 10);
println!("");
println!("*********************************************************");
println!("Scenario 3) Sudden drop in hashpower");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
// Sudden increase
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_block_repeated(60, chain_sim, just_enough as usize);
let chain_sim = add_block_repeated(10, chain_sim, 10);
println!("");
println!("*********************************************************");
println!("Scenario 4) Sudden increase in hashpower");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
// Oscillations
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_block_repeated(60, chain_sim, just_enough as usize);
let chain_sim = add_block_repeated(10, chain_sim, 10);
let chain_sim = add_block_repeated(60, chain_sim, 20);
let chain_sim = add_block_repeated(10, chain_sim, 10);
println!("");
println!("*********************************************************");
println!("Scenario 5) Oscillations in hashpower");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
}
/// Checks different next_target adjustments and difficulty boundaries
#[test]
fn next_target_adjustment() {
global::set_mining_mode(global::ChainTypes::AutomatedTesting);
let cur_time = time::get_time().sec as u64;
assert_eq!(
next_difficulty(vec![Ok((cur_time, Difficulty::one()))]).unwrap(),
Difficulty::one()
);
assert_eq!(
next_difficulty(repeat(60, 1, DIFFICULTY_ADJUST_WINDOW, None)).unwrap(),
Difficulty::one()
);
// Check we don't get stuck on difficulty 1
assert_ne!(
next_difficulty(repeat(1, 10, DIFFICULTY_ADJUST_WINDOW, None)).unwrap(),
Difficulty::one()
);
// just enough data, right interval, should stay constant
let just_enough = DIFFICULTY_ADJUST_WINDOW + MEDIAN_TIME_WINDOW;
assert_eq!(
next_difficulty(repeat(60, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1000)
);
// checking averaging works
let sec = DIFFICULTY_ADJUST_WINDOW / 2 + MEDIAN_TIME_WINDOW;
let mut s1 = repeat(60, 500, sec, Some(cur_time));
let mut s2 = repeat_offs(cur_time+(sec * 60) as u64, 60, 1500, DIFFICULTY_ADJUST_WINDOW / 2);
s2.append(&mut s1);
assert_eq!(next_difficulty(s2).unwrap(), Difficulty::from_num(1000));
// too slow, diff goes down
assert_eq!(
next_difficulty(repeat(90, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(857)
);
assert_eq!(
next_difficulty(repeat(120, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(750)
);
// too fast, diff goes up
assert_eq!(
next_difficulty(repeat(55, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1028)
);
assert_eq!(
next_difficulty(repeat(45, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1090)
);
// hitting lower time bound, should always get the same result below
assert_eq!(
next_difficulty(repeat(0, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1500)
);
assert_eq!(
next_difficulty(repeat(0, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1500)
);
// hitting higher time bound, should always get the same result above
assert_eq!(
next_difficulty(repeat(300, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(500)
);
assert_eq!(
next_difficulty(repeat(400, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(500)
);
// We should never drop below 1
assert_eq!(
next_difficulty(repeat(90, 0, just_enough, None)).unwrap(),
Difficulty::from_num(1)
);
}
#[test]
fn hard_fork_1() {
assert!(valid_header_version(0, 1));
assert!(valid_header_version(10, 1));
assert!(!valid_header_version(10, 2));
assert!(valid_header_version(250_000, 1));
assert!(!valid_header_version(250_001, 1));
assert!(!valid_header_version(500_000, 1));
assert!(!valid_header_version(250_001, 2));
}
// #[test]
// fn hard_fork_2() {
// assert!(valid_header_version(0, 1));
// assert!(valid_header_version(10, 1));
// assert!(valid_header_version(10, 2));
// assert!(valid_header_version(250_000, 1));
// assert!(!valid_header_version(250_001, 1));
// assert!(!valid_header_version(500_000, 1));
// assert!(valid_header_version(250_001, 2));
// assert!(valid_header_version(500_000, 2));
// assert!(!valid_header_version(500_001, 2));
// }