mirror of
https://github.com/mimblewimble/grin.git
synced 2025-01-21 11:31:08 +03:00
133089e985
* refactor output to have internal output identifier refactor to use AsRef for output identifier make the output MMR explicit in terms of output identifiers * put the serde deser back for rangeproof * add json test for transactions
580 lines
18 KiB
Rust
580 lines
18 KiB
Rust
// Copyright 2020 The Grin Developers
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
//! Transaction pool implementation.
|
|
//! Used for both the txpool and stempool layers in the pool.
|
|
|
|
use self::core::core::hash::{Hash, Hashed};
|
|
use self::core::core::id::{ShortId, ShortIdentifiable};
|
|
use self::core::core::transaction;
|
|
use self::core::core::verifier_cache::VerifierCache;
|
|
use self::core::core::{
|
|
Block, BlockHeader, BlockSums, Committed, OutputIdentifier, Transaction, TxKernel, Weighting,
|
|
};
|
|
use self::util::RwLock;
|
|
use crate::types::{BlockChain, PoolEntry, PoolError};
|
|
use grin_core as core;
|
|
use grin_util as util;
|
|
use std::cmp::Reverse;
|
|
use std::collections::{HashMap, HashSet};
|
|
use std::sync::Arc;
|
|
use util::secp::pedersen::Commitment;
|
|
use util::static_secp_instance;
|
|
|
|
pub struct Pool<B, V>
|
|
where
|
|
B: BlockChain,
|
|
V: VerifierCache,
|
|
{
|
|
/// Entries in the pool (tx + info + timer) in simple insertion order.
|
|
pub entries: Vec<PoolEntry>,
|
|
/// The blockchain
|
|
pub blockchain: Arc<B>,
|
|
pub verifier_cache: Arc<RwLock<V>>,
|
|
pub name: String,
|
|
}
|
|
|
|
impl<B, V> Pool<B, V>
|
|
where
|
|
B: BlockChain,
|
|
V: VerifierCache + 'static,
|
|
{
|
|
pub fn new(chain: Arc<B>, verifier_cache: Arc<RwLock<V>>, name: String) -> Self {
|
|
Pool {
|
|
entries: vec![],
|
|
blockchain: chain,
|
|
verifier_cache,
|
|
name,
|
|
}
|
|
}
|
|
|
|
/// Does the transaction pool contain an entry for the given transaction?
|
|
pub fn contains_tx(&self, hash: Hash) -> bool {
|
|
self.entries.iter().any(|x| x.tx.hash() == hash)
|
|
}
|
|
|
|
pub fn get_tx(&self, hash: Hash) -> Option<Transaction> {
|
|
self.entries
|
|
.iter()
|
|
.find(|x| x.tx.hash() == hash)
|
|
.map(|x| x.tx.clone())
|
|
}
|
|
|
|
/// Query the tx pool for an individual tx matching the given public excess.
|
|
/// Used for checking for duplicate NRD kernels in the txpool.
|
|
pub fn retrieve_tx_by_kernel_excess(&self, excess: Commitment) -> Option<Transaction> {
|
|
for x in &self.entries {
|
|
for k in x.tx.kernels() {
|
|
if k.excess() == excess {
|
|
return Some(x.tx.clone());
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Query the tx pool for an individual tx matching the given kernel hash.
|
|
pub fn retrieve_tx_by_kernel_hash(&self, hash: Hash) -> Option<Transaction> {
|
|
for x in &self.entries {
|
|
for k in x.tx.kernels() {
|
|
if k.hash() == hash {
|
|
return Some(x.tx.clone());
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Query the tx pool for all known txs based on kernel short_ids
|
|
/// from the provided compact_block.
|
|
/// Note: does not validate that we return the full set of required txs.
|
|
/// The caller will need to validate that themselves.
|
|
pub fn retrieve_transactions(
|
|
&self,
|
|
hash: Hash,
|
|
nonce: u64,
|
|
kern_ids: &[ShortId],
|
|
) -> (Vec<Transaction>, Vec<ShortId>) {
|
|
let mut txs = vec![];
|
|
let mut found_ids = vec![];
|
|
|
|
// Rehash all entries in the pool using short_ids based on provided hash and nonce.
|
|
'outer: for x in &self.entries {
|
|
for k in x.tx.kernels() {
|
|
// rehash each kernel to calculate the block specific short_id
|
|
let short_id = k.short_id(&hash, nonce);
|
|
if kern_ids.contains(&short_id) {
|
|
txs.push(x.tx.clone());
|
|
found_ids.push(short_id);
|
|
}
|
|
if found_ids.len() == kern_ids.len() {
|
|
break 'outer;
|
|
}
|
|
}
|
|
}
|
|
txs.dedup();
|
|
(
|
|
txs,
|
|
kern_ids
|
|
.iter()
|
|
.filter(|id| !found_ids.contains(id))
|
|
.cloned()
|
|
.collect(),
|
|
)
|
|
}
|
|
|
|
/// Take pool transactions, filtering and ordering them in a way that's
|
|
/// appropriate to put in a mined block. Aggregates chains of dependent
|
|
/// transactions, orders by fee over weight and ensures the total weight
|
|
/// does not exceed the provided max_weight (miner defined block weight).
|
|
pub fn prepare_mineable_transactions(
|
|
&self,
|
|
max_weight: u64,
|
|
) -> Result<Vec<Transaction>, PoolError> {
|
|
let weighting = Weighting::AsLimitedTransaction(max_weight);
|
|
|
|
// Sort the txs in the pool via the "bucket" logic to -
|
|
// * maintain dependency ordering
|
|
// * maximize cut-through
|
|
// * maximize overall fees
|
|
let txs = self.bucket_transactions(weighting);
|
|
|
|
// Iteratively apply the txs to the current chain state,
|
|
// rejecting any that do not result in a valid state.
|
|
// Verify these txs produce an aggregated tx below max_weight.
|
|
// Return a vec of all the valid txs.
|
|
let header = self.blockchain.chain_head()?;
|
|
let valid_txs = self.validate_raw_txs(&txs, None, &header, weighting)?;
|
|
Ok(valid_txs)
|
|
}
|
|
|
|
pub fn all_transactions(&self) -> Vec<Transaction> {
|
|
self.entries.iter().map(|x| x.tx.clone()).collect()
|
|
}
|
|
|
|
/// Return a single aggregate tx representing all txs in the pool.
|
|
/// Takes an optional "extra tx" to include in the aggregation.
|
|
/// Returns None if there is nothing to aggregate.
|
|
/// Returns the extra tx if provided and pool is empty.
|
|
pub fn all_transactions_aggregate(
|
|
&self,
|
|
extra_tx: Option<Transaction>,
|
|
) -> Result<Option<Transaction>, PoolError> {
|
|
let mut txs = self.all_transactions();
|
|
if txs.is_empty() {
|
|
return Ok(extra_tx);
|
|
}
|
|
|
|
txs.extend(extra_tx);
|
|
|
|
let tx = transaction::aggregate(&txs)?;
|
|
|
|
// Validate the single aggregate transaction "as pool", not subject to tx weight limits.
|
|
tx.validate(Weighting::NoLimit, self.verifier_cache.clone())?;
|
|
|
|
Ok(Some(tx))
|
|
}
|
|
|
|
// Aggregate this new tx with all existing txs in the pool.
|
|
// If we can validate the aggregated tx against the current chain state
|
|
// then we can safely add the tx to the pool.
|
|
pub fn add_to_pool(
|
|
&mut self,
|
|
entry: PoolEntry,
|
|
extra_tx: Option<Transaction>,
|
|
header: &BlockHeader,
|
|
) -> Result<(), PoolError> {
|
|
// Combine all the txs from the pool with any extra txs provided.
|
|
let mut txs = self.all_transactions();
|
|
|
|
// Quick check to see if we have seen this tx before.
|
|
if txs.contains(&entry.tx) {
|
|
return Err(PoolError::DuplicateTx);
|
|
}
|
|
|
|
// Make sure we take extra_tx into consideration here.
|
|
// When adding to stempool we need to account for current txpool.
|
|
txs.extend(extra_tx);
|
|
|
|
let agg_tx = if txs.is_empty() {
|
|
// If we have nothing to aggregate then simply return the tx itself.
|
|
entry.tx.clone()
|
|
} else {
|
|
// Create a single aggregated tx from the existing pool txs and the
|
|
// new entry
|
|
txs.push(entry.tx.clone());
|
|
transaction::aggregate(&txs)?
|
|
};
|
|
|
|
// Validate aggregated tx (existing pool + new tx), ignoring tx weight limits.
|
|
// Validate against known chain state at the provided header.
|
|
self.validate_raw_tx(&agg_tx, header, Weighting::NoLimit)?;
|
|
// If we get here successfully then we can safely add the entry to the pool.
|
|
self.log_pool_add(&entry, header);
|
|
self.entries.push(entry);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn log_pool_add(&self, entry: &PoolEntry, header: &BlockHeader) {
|
|
debug!(
|
|
"add_to_pool [{}]: {} ({:?}) [in/out/kern: {}/{}/{}] pool: {} (at block {})",
|
|
self.name,
|
|
entry.tx.hash(),
|
|
entry.src,
|
|
entry.tx.inputs().len(),
|
|
entry.tx.outputs().len(),
|
|
entry.tx.kernels().len(),
|
|
self.size(),
|
|
header.hash(),
|
|
);
|
|
}
|
|
|
|
fn validate_raw_tx(
|
|
&self,
|
|
tx: &Transaction,
|
|
header: &BlockHeader,
|
|
weighting: Weighting,
|
|
) -> Result<BlockSums, PoolError> {
|
|
// Validate the tx, conditionally checking against weight limits,
|
|
// based on weight verification type.
|
|
tx.validate(weighting, self.verifier_cache.clone())?;
|
|
|
|
// Validate the tx against current chain state.
|
|
// Check all inputs are in the current UTXO set.
|
|
// Check all outputs are unique in current UTXO set.
|
|
self.blockchain.validate_tx(tx)?;
|
|
|
|
let new_sums = self.apply_tx_to_block_sums(tx, header)?;
|
|
Ok(new_sums)
|
|
}
|
|
|
|
pub fn validate_raw_txs(
|
|
&self,
|
|
txs: &[Transaction],
|
|
extra_tx: Option<Transaction>,
|
|
header: &BlockHeader,
|
|
weighting: Weighting,
|
|
) -> Result<Vec<Transaction>, PoolError> {
|
|
let mut valid_txs = vec![];
|
|
|
|
for tx in txs {
|
|
let mut candidate_txs = vec![];
|
|
if let Some(extra_tx) = extra_tx.clone() {
|
|
candidate_txs.push(extra_tx);
|
|
};
|
|
candidate_txs.extend(valid_txs.clone());
|
|
candidate_txs.push(tx.clone());
|
|
|
|
// Build a single aggregate tx from candidate txs.
|
|
let agg_tx = transaction::aggregate(&candidate_txs)?;
|
|
|
|
// We know the tx is valid if the entire aggregate tx is valid.
|
|
if self.validate_raw_tx(&agg_tx, header, weighting).is_ok() {
|
|
valid_txs.push(tx.clone());
|
|
}
|
|
}
|
|
|
|
Ok(valid_txs)
|
|
}
|
|
|
|
/// Convert a transaction for v2 compatibility.
|
|
/// We may receive a transaction with "commit only" inputs.
|
|
/// We convert it to "features and commit" so we can safely relay it to v2 peers.
|
|
/// Converson is done by looking up outputs to be spent in both the pool and the current utxo.
|
|
pub fn convert_tx_v2(
|
|
&self,
|
|
tx: Transaction,
|
|
extra_tx: Option<Transaction>,
|
|
) -> Result<Transaction, PoolError> {
|
|
let mut inputs: Vec<_> = tx.inputs().into();
|
|
|
|
let agg_tx = self
|
|
.all_transactions_aggregate(extra_tx)?
|
|
.unwrap_or(Transaction::empty());
|
|
let mut outputs: Vec<OutputIdentifier> = agg_tx
|
|
.outputs()
|
|
.iter()
|
|
.map(|out| out.identifier())
|
|
.collect();
|
|
|
|
// By applying cut_through to tx inputs and agg_tx outputs we can
|
|
// determine the outputs being spent from the pool and those still unspent
|
|
// that need to be looked up via the current utxo.
|
|
let (inputs, _, _, spent_pool) =
|
|
transaction::cut_through(&mut inputs[..], &mut outputs[..])?;
|
|
|
|
// Lookup remaining outputs to be spent from the current utxo.
|
|
let spent_utxo = self.blockchain.validate_inputs(inputs.into())?;
|
|
|
|
// Combine outputs spent in utxo with outputs spent in pool to give us the
|
|
// full set of outputs being spent by this transaction.
|
|
// This is our source of truth for input features.
|
|
let mut spent = spent_pool.to_vec();
|
|
spent.extend(spent_utxo);
|
|
spent.sort();
|
|
|
|
// Now build the resulting transaction based on our inputs and outputs from the original transaction.
|
|
// Remember to use the original kernels and kernel offset.
|
|
let mut outputs = tx.outputs().to_vec();
|
|
let (inputs, outputs, _, _) = transaction::cut_through(&mut spent[..], &mut outputs[..])?;
|
|
let inputs: Vec<_> = inputs.iter().map(|out| out.into()).collect();
|
|
let tx = Transaction::new(inputs.as_slice(), outputs, tx.kernels()).with_offset(tx.offset);
|
|
|
|
// Validate the tx to ensure our converted inputs are correct.
|
|
tx.validate(Weighting::AsTransaction, self.verifier_cache.clone())
|
|
.map_err(PoolError::InvalidTx)?;
|
|
|
|
Ok(tx)
|
|
}
|
|
|
|
fn apply_tx_to_block_sums(
|
|
&self,
|
|
tx: &Transaction,
|
|
header: &BlockHeader,
|
|
) -> Result<BlockSums, PoolError> {
|
|
let overage = tx.overage();
|
|
|
|
let offset = {
|
|
let secp = static_secp_instance();
|
|
let secp = secp.lock();
|
|
header.total_kernel_offset().add(&tx.offset, &secp)
|
|
}?;
|
|
|
|
let block_sums = self.blockchain.get_block_sums(&header.hash())?;
|
|
|
|
// Verify the kernel sums for the block_sums with the new tx applied,
|
|
// accounting for overage and offset.
|
|
let (utxo_sum, kernel_sum) =
|
|
(block_sums, tx as &dyn Committed).verify_kernel_sums(overage, offset)?;
|
|
|
|
Ok(BlockSums {
|
|
utxo_sum,
|
|
kernel_sum,
|
|
})
|
|
}
|
|
|
|
pub fn reconcile(
|
|
&mut self,
|
|
extra_tx: Option<Transaction>,
|
|
header: &BlockHeader,
|
|
) -> Result<(), PoolError> {
|
|
let existing_entries = self.entries.clone();
|
|
self.entries.clear();
|
|
for x in existing_entries {
|
|
let _ = self.add_to_pool(x, extra_tx.clone(), header);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// Use our bucket logic to identify the best transaction for eviction and evict it.
|
|
// We want to avoid evicting a transaction where another transaction depends on it.
|
|
// We want to evict a transaction with low fee_to_weight.
|
|
pub fn evict_transaction(&mut self) {
|
|
if let Some(evictable_transaction) = self.bucket_transactions(Weighting::NoLimit).last() {
|
|
self.entries.retain(|x| x.tx != *evictable_transaction);
|
|
};
|
|
}
|
|
|
|
/// Buckets consist of a vec of txs and track the aggregate fee_to_weight.
|
|
/// We aggregate (cut-through) dependent transactions within a bucket *unless* adding a tx
|
|
/// would reduce the aggregate fee_to_weight, in which case we start a new bucket.
|
|
/// Note this new bucket will by definition have a lower fee_to_weight than the bucket
|
|
/// containing the tx it depends on.
|
|
/// Sorting the buckets by fee_to_weight will therefore preserve dependency ordering,
|
|
/// maximizing both cut-through and overall fees.
|
|
fn bucket_transactions(&self, weighting: Weighting) -> Vec<Transaction> {
|
|
let mut tx_buckets: Vec<Bucket> = Vec::new();
|
|
let mut output_commits = HashMap::new();
|
|
let mut rejected = HashSet::new();
|
|
|
|
for entry in &self.entries {
|
|
// check the commits index to find parents and their position
|
|
// if single parent then we are good, we can bucket it with its parent
|
|
// if multiple parents then we need to combine buckets, but for now simply reject it (rare case)
|
|
let mut insert_pos = None;
|
|
let mut is_rejected = false;
|
|
|
|
let tx_inputs: Vec<_> = entry.tx.inputs().into();
|
|
for input in tx_inputs {
|
|
if rejected.contains(&input.commitment()) {
|
|
// Depends on a rejected tx, so reject this one.
|
|
is_rejected = true;
|
|
continue;
|
|
} else if let Some(pos) = output_commits.get(&input.commitment()) {
|
|
if insert_pos.is_some() {
|
|
// Multiple dependencies so reject this tx (pick it up in next block).
|
|
is_rejected = true;
|
|
continue;
|
|
} else {
|
|
// Track the pos of the bucket we fall into.
|
|
insert_pos = Some(*pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this tx is rejected then store all output commitments in our rejected set.
|
|
if is_rejected {
|
|
for out in entry.tx.outputs() {
|
|
rejected.insert(out.commitment());
|
|
}
|
|
|
|
// Done with this entry (rejected), continue to next entry.
|
|
continue;
|
|
}
|
|
|
|
match insert_pos {
|
|
None => {
|
|
// No parent tx, just add to the end in its own bucket.
|
|
// This is the common case for non 0-conf txs in the txpool.
|
|
// We assume the tx is valid here as we validated it on the way into the txpool.
|
|
insert_pos = Some(tx_buckets.len());
|
|
tx_buckets.push(Bucket::new(entry.tx.clone(), tx_buckets.len()));
|
|
}
|
|
Some(pos) => {
|
|
// We found a single parent tx, so aggregate in the bucket
|
|
// if the aggregate tx is a valid tx.
|
|
// Otherwise discard and let the next block pick this tx up.
|
|
let bucket = &tx_buckets[pos];
|
|
|
|
if let Ok(new_bucket) = bucket.aggregate_with_tx(
|
|
entry.tx.clone(),
|
|
weighting,
|
|
self.verifier_cache.clone(),
|
|
) {
|
|
if new_bucket.fee_to_weight >= bucket.fee_to_weight {
|
|
// Only aggregate if it would not reduce the fee_to_weight ratio.
|
|
tx_buckets[pos] = new_bucket;
|
|
} else {
|
|
// Otherwise put it in its own bucket at the end.
|
|
// Note: This bucket will have a lower fee_to_weight
|
|
// than the bucket it depends on.
|
|
tx_buckets.push(Bucket::new(entry.tx.clone(), tx_buckets.len()));
|
|
}
|
|
} else {
|
|
// Aggregation failed so discard this new tx.
|
|
is_rejected = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if is_rejected {
|
|
for out in entry.tx.outputs() {
|
|
rejected.insert(out.commitment());
|
|
}
|
|
} else if let Some(insert_pos) = insert_pos {
|
|
// We successfully added this tx to our set of buckets.
|
|
// Update commits index for subsequent txs.
|
|
for out in entry.tx.outputs() {
|
|
output_commits.insert(out.commitment(), insert_pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort buckets by fee_to_weight (descending) and age (oldest first).
|
|
// Txs with highest fee_to_weight will be prioritied.
|
|
// Aggregation that increases the fee_to_weight of a bucket will prioritize the bucket.
|
|
// Oldest (based on pool insertion time) will then be prioritized.
|
|
tx_buckets.sort_unstable_by_key(|x| (Reverse(x.fee_to_weight), x.age_idx));
|
|
|
|
tx_buckets.into_iter().flat_map(|x| x.raw_txs).collect()
|
|
}
|
|
|
|
/// TODO - This is kernel based. How does this interact with NRD?
|
|
pub fn find_matching_transactions(&self, kernels: &[TxKernel]) -> Vec<Transaction> {
|
|
// While the inputs outputs can be cut-through the kernel will stay intact
|
|
// In order to deaggregate tx we look for tx with the same kernel
|
|
let mut found_txs = vec![];
|
|
|
|
// Gather all the kernels of the multi-kernel transaction in one set
|
|
let kernel_set = kernels.iter().collect::<HashSet<_>>();
|
|
|
|
// Check each transaction in the pool
|
|
for entry in &self.entries {
|
|
let entry_kernel_set = entry.tx.kernels().iter().collect::<HashSet<_>>();
|
|
if entry_kernel_set.is_subset(&kernel_set) {
|
|
found_txs.push(entry.tx.clone());
|
|
}
|
|
}
|
|
found_txs
|
|
}
|
|
|
|
/// Quick reconciliation step - we can evict any txs in the pool where
|
|
/// inputs or kernels intersect with the block.
|
|
pub fn reconcile_block(&mut self, block: &Block) {
|
|
// Filter txs in the pool based on the latest block.
|
|
// Reject any txs where we see a matching tx kernel in the block.
|
|
// Also reject any txs where we see a conflicting tx,
|
|
// where an input is spent in a different tx.
|
|
let block_inputs: Vec<_> = block.inputs().into();
|
|
self.entries.retain(|x| {
|
|
let tx_inputs: Vec<_> = x.tx.inputs().into();
|
|
!x.tx.kernels().iter().any(|y| block.kernels().contains(y))
|
|
&& !tx_inputs.iter().any(|y| block_inputs.contains(y))
|
|
});
|
|
}
|
|
|
|
/// Size of the pool.
|
|
pub fn size(&self) -> usize {
|
|
self.entries.len()
|
|
}
|
|
|
|
/// Number of transaction kernels in the pool.
|
|
/// This may differ from the size (number of transactions) due to tx aggregation.
|
|
pub fn kernel_count(&self) -> usize {
|
|
self.entries.iter().map(|x| x.tx.kernels().len()).sum()
|
|
}
|
|
|
|
/// Is the pool empty?
|
|
pub fn is_empty(&self) -> bool {
|
|
self.entries.is_empty()
|
|
}
|
|
}
|
|
|
|
struct Bucket {
|
|
raw_txs: Vec<Transaction>,
|
|
fee_to_weight: u64,
|
|
age_idx: usize,
|
|
}
|
|
|
|
impl Bucket {
|
|
/// Construct a new bucket with the given tx.
|
|
/// also specifies an "age_idx" so we can sort buckets by age
|
|
/// as well as fee_to_weight. Txs are maintainedin the pool in insert order
|
|
/// so buckets with low age_idx contain oldest txs.
|
|
fn new(tx: Transaction, age_idx: usize) -> Bucket {
|
|
Bucket {
|
|
fee_to_weight: tx.fee_to_weight(),
|
|
raw_txs: vec![tx],
|
|
age_idx,
|
|
}
|
|
}
|
|
|
|
fn aggregate_with_tx(
|
|
&self,
|
|
new_tx: Transaction,
|
|
weighting: Weighting,
|
|
verifier_cache: Arc<RwLock<dyn VerifierCache>>,
|
|
) -> Result<Bucket, PoolError> {
|
|
let mut raw_txs = self.raw_txs.clone();
|
|
raw_txs.push(new_tx);
|
|
let agg_tx = transaction::aggregate(&raw_txs)?;
|
|
agg_tx.validate(weighting, verifier_cache)?;
|
|
Ok(Bucket {
|
|
fee_to_weight: agg_tx.fee_to_weight(),
|
|
raw_txs: raw_txs,
|
|
age_idx: self.age_idx,
|
|
})
|
|
}
|
|
}
|