grin/core/tests/block.rs
Ignotus Peverell 43f4f92730
[T4] Secondary proof of work difficulty adjustments (#1709)
* First pass at secondary proof of work difficulty adjustments
* Core and chain test fixes
* Next difficulty calc now needs a height. Scaling calculation fixes. Setting scaling on mined block.
* Change factor to u32 instead of u64.
* Cleanup structs used by next_difficulty
* Fix header size calc with u32 scaling
2018-10-13 13:57:01 -07:00

431 lines
13 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
extern crate chrono;
extern crate grin_core;
extern crate grin_keychain as keychain;
extern crate grin_util as util;
extern crate grin_wallet as wallet;
use std::sync::{Arc, RwLock};
use std::time::Instant;
pub mod common;
use chrono::Duration;
use common::{new_block, tx1i2o, tx2i1o, txspend1i1o};
use grin_core::consensus::{BLOCK_OUTPUT_WEIGHT, MAX_BLOCK_WEIGHT};
use grin_core::core::block::Error;
use grin_core::core::hash::Hashed;
use grin_core::core::id::ShortIdentifiable;
use grin_core::core::verifier_cache::{LruVerifierCache, VerifierCache};
use grin_core::core::Committed;
use grin_core::core::{Block, BlockHeader, CompactBlock, KernelFeatures, OutputFeatures};
use grin_core::{global, ser};
use keychain::{BlindingFactor, ExtKeychain, Keychain};
use util::secp;
use wallet::libtx::build::{self, input, output, with_fee};
fn verifier_cache() -> Arc<RwLock<VerifierCache>> {
Arc::new(RwLock::new(LruVerifierCache::new()))
}
// Too slow for now #[test]
// TODO: make this fast enough or add similar but faster test?
#[allow(dead_code)]
fn too_large_block() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let max_out = MAX_BLOCK_WEIGHT / BLOCK_OUTPUT_WEIGHT;
let mut pks = vec![];
for n in 0..(max_out + 1) {
pks.push(ExtKeychain::derive_key_id(1, n as u32, 0, 0, 0));
}
let mut parts = vec![];
for _ in 0..max_out {
parts.push(output(5, pks.pop().unwrap()));
}
let now = Instant::now();
parts.append(&mut vec![input(500000, pks.pop().unwrap()), with_fee(2)]);
let tx = build::transaction(parts, &keychain).unwrap();
println!("Build tx: {}", now.elapsed().as_secs());
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx], &keychain, &prev, &key_id);
assert!(
b.validate(&BlindingFactor::zero(), verifier_cache())
.is_err()
);
}
#[test]
// block with no inputs/outputs/kernels
// no fees, no reward, no coinbase
fn very_empty_block() {
let b = Block::with_header(BlockHeader::default());
assert_eq!(
b.verify_coinbase(),
Err(Error::Secp(secp::Error::IncorrectCommitSum))
);
}
#[test]
// builds a block with a tx spending another and check that cut_through occurred
fn block_with_cut_through() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let mut btx1 = tx2i1o();
let mut btx2 = build::transaction(
vec![input(7, key_id1), output(5, key_id2.clone()), with_fee(2)],
&keychain,
).unwrap();
// spending tx2 - reuse key_id2
let mut btx3 = txspend1i1o(5, &keychain, key_id2.clone(), key_id3);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(
vec![&mut btx1, &mut btx2, &mut btx3],
&keychain,
&prev,
&key_id,
);
// block should have been automatically compacted (including reward
// output) and should still be valid
println!("3");
b.validate(&BlindingFactor::zero(), verifier_cache())
.unwrap();
assert_eq!(b.inputs().len(), 3);
assert_eq!(b.outputs().len(), 3);
println!("4");
}
#[test]
fn empty_block_with_coinbase_is_valid() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &prev, &key_id);
assert_eq!(b.inputs().len(), 0);
assert_eq!(b.outputs().len(), 1);
assert_eq!(b.kernels().len(), 1);
let coinbase_outputs = b
.outputs()
.iter()
.filter(|out| out.features.contains(OutputFeatures::COINBASE_OUTPUT))
.map(|o| o.clone())
.collect::<Vec<_>>();
assert_eq!(coinbase_outputs.len(), 1);
let coinbase_kernels = b
.kernels()
.iter()
.filter(|out| out.features.contains(KernelFeatures::COINBASE_KERNEL))
.map(|o| o.clone())
.collect::<Vec<_>>();
assert_eq!(coinbase_kernels.len(), 1);
// the block should be valid here (single coinbase output with corresponding
// txn kernel)
assert!(
b.validate(&BlindingFactor::zero(), verifier_cache())
.is_ok()
);
}
#[test]
// test that flipping the COINBASE_OUTPUT flag on the output features
// invalidates the block and specifically it causes verify_coinbase to fail
// additionally verifying the merkle_inputs_outputs also fails
fn remove_coinbase_output_flag() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let mut b = new_block(vec![], &keychain, &prev, &key_id);
assert!(
b.outputs()[0]
.features
.contains(OutputFeatures::COINBASE_OUTPUT)
);
b.outputs_mut()[0]
.features
.remove(OutputFeatures::COINBASE_OUTPUT);
assert_eq!(b.verify_coinbase(), Err(Error::CoinbaseSumMismatch));
assert!(
b.verify_kernel_sums(b.header.overage(), b.header.total_kernel_offset())
.is_ok()
);
assert_eq!(
b.validate(&BlindingFactor::zero(), verifier_cache()),
Err(Error::CoinbaseSumMismatch)
);
}
#[test]
// test that flipping the COINBASE_KERNEL flag on the kernel features
// invalidates the block and specifically it causes verify_coinbase to fail
fn remove_coinbase_kernel_flag() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let mut b = new_block(vec![], &keychain, &prev, &key_id);
assert!(
b.kernels()[0]
.features
.contains(KernelFeatures::COINBASE_KERNEL)
);
b.kernels_mut()[0]
.features
.remove(KernelFeatures::COINBASE_KERNEL);
assert_eq!(
b.verify_coinbase(),
Err(Error::Secp(secp::Error::IncorrectCommitSum))
);
assert_eq!(
b.validate(&BlindingFactor::zero(), verifier_cache()),
Err(Error::Secp(secp::Error::IncorrectCommitSum))
);
}
#[test]
fn serialize_deserialize_block_header() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &prev, &key_id);
let header1 = b.header;
let mut vec = Vec::new();
ser::serialize(&mut vec, &header1).expect("serialization failed");
let header2: BlockHeader = ser::deserialize(&mut &vec[..]).unwrap();
assert_eq!(header1.hash(), header2.hash());
assert_eq!(header1, header2);
}
#[test]
fn serialize_deserialize_block() {
let tx1 = tx1i2o();
let keychain = ExtKeychain::from_random_seed().unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize(&mut vec, &b).expect("serialization failed");
let b2: Block = ser::deserialize(&mut &vec[..]).unwrap();
assert_eq!(b.hash(), b2.hash());
assert_eq!(b.header, b2.header);
assert_eq!(b.inputs(), b2.inputs());
assert_eq!(b.outputs(), b2.outputs());
assert_eq!(b.kernels(), b2.kernels());
}
#[test]
fn empty_block_serialized_size() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize(&mut vec, &b).expect("serialization failed");
let target_len = 1_228;
assert_eq!(vec.len(), target_len);
}
#[test]
fn block_single_tx_serialized_size() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize(&mut vec, &b).expect("serialization failed");
let target_len = 2_810;
assert_eq!(vec.len(), target_len);
}
#[test]
fn empty_compact_block_serialized_size() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize(&mut vec, &cb).expect("serialization failed");
let target_len = 1_236;
assert_eq!(vec.len(), target_len);
}
#[test]
fn compact_block_single_tx_serialized_size() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize(&mut vec, &cb).expect("serialization failed");
let target_len = 1_242;
assert_eq!(vec.len(), target_len);
}
#[test]
fn block_10_tx_serialized_size() {
let keychain = ExtKeychain::from_random_seed().unwrap();
global::set_mining_mode(global::ChainTypes::Mainnet);
let mut txs = vec![];
for _ in 0..10 {
let tx = tx1i2o();
txs.push(tx);
}
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(txs.iter().collect(), &keychain, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize(&mut vec, &b).expect("serialization failed");
let target_len = 17_048;
assert_eq!(vec.len(), target_len,);
}
#[test]
fn compact_block_10_tx_serialized_size() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let mut txs = vec![];
for _ in 0..10 {
let tx = tx1i2o();
txs.push(tx);
}
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(txs.iter().collect(), &keychain, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize(&mut vec, &cb).expect("serialization failed");
let target_len = 1_296;
assert_eq!(vec.len(), target_len,);
}
#[test]
fn compact_block_hash_with_nonce() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let tx = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx], &keychain, &prev, &key_id);
let cb1: CompactBlock = b.clone().into();
let cb2: CompactBlock = b.clone().into();
// random nonce will not affect the hash of the compact block itself
// hash is based on header POW only
assert!(cb1.nonce != cb2.nonce);
assert_eq!(b.hash(), cb1.hash());
assert_eq!(cb1.hash(), cb2.hash());
assert!(cb1.kern_ids()[0] != cb2.kern_ids()[0]);
// check we can identify the specified kernel from the short_id
// correctly in both of the compact_blocks
assert_eq!(
cb1.kern_ids()[0],
tx.kernels()[0].short_id(&cb1.hash(), cb1.nonce)
);
assert_eq!(
cb2.kern_ids()[0],
tx.kernels()[0].short_id(&cb2.hash(), cb2.nonce)
);
}
#[test]
fn convert_block_to_compact_block() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &prev, &key_id);
let cb: CompactBlock = b.clone().into();
assert_eq!(cb.out_full().len(), 1);
assert_eq!(cb.kern_full().len(), 1);
assert_eq!(cb.kern_ids().len(), 1);
assert_eq!(
cb.kern_ids()[0],
b.kernels()
.iter()
.find(|x| !x.features.contains(KernelFeatures::COINBASE_KERNEL))
.unwrap()
.short_id(&cb.hash(), cb.nonce)
);
}
#[test]
fn hydrate_empty_compact_block() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![], &keychain, &prev, &key_id);
let cb: CompactBlock = b.clone().into();
let hb = Block::hydrate_from(cb, vec![]).unwrap();
assert_eq!(hb.header, b.header);
assert_eq!(hb.outputs(), b.outputs());
assert_eq!(hb.kernels(), b.kernels());
}
#[test]
fn serialize_deserialize_compact_block() {
let keychain = ExtKeychain::from_random_seed().unwrap();
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(vec![&tx1], &keychain, &prev, &key_id);
let mut cb1: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize(&mut vec, &cb1).expect("serialization failed");
// After header serialization, timestamp will lose 'nanos' info, that's the designed behavior.
// To suppress 'nanos' difference caused assertion fail, we force b.header also lose 'nanos'.
let origin_ts = cb1.header.timestamp;
cb1.header.timestamp =
origin_ts - Duration::nanoseconds(origin_ts.timestamp_subsec_nanos() as i64);
let cb2: CompactBlock = ser::deserialize(&mut &vec[..]).unwrap();
assert_eq!(cb1.header, cb2.header);
assert_eq!(cb1.kern_ids(), cb2.kern_ids());
}