grin/chain/src/pipe.rs
Antioch Peverell 515fa54614
Rewind head and header_head consistently. (#2918)
* maintain header_head as distinctly separate from head

* cleanup corrupted storage log msg

* simplify process_header and check_header_known

* remember to commit the batch when successfully processing a header...

* rework sync_block_headers for consistency with process_block_header

* cleanup unrelated code

* fix pool tests

* cleanup chain tests

* cleanup chain tests (reuse helpers more)

* cleanup - head not header on an extension
shortcircuit "rewind and apply fork" for headers if next header
2019-07-26 08:36:24 +01:00

606 lines
21 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of the chain block acceptance (or refusal) pipeline.
use crate::core::consensus;
use crate::core::core::hash::Hashed;
use crate::core::core::verifier_cache::VerifierCache;
use crate::core::core::Committed;
use crate::core::core::{Block, BlockHeader, BlockSums};
use crate::core::pow;
use crate::error::{Error, ErrorKind};
use crate::store;
use crate::txhashset;
use crate::types::{Options, Tip};
use crate::util::RwLock;
use chrono::prelude::Utc;
use chrono::Duration;
use grin_store;
use std::sync::Arc;
/// Contextual information required to process a new block and either reject or
/// accept it.
pub struct BlockContext<'a> {
/// The options
pub opts: Options,
/// The pow verifier to use when processing a block.
pub pow_verifier: fn(&BlockHeader) -> Result<(), pow::Error>,
/// The active txhashset (rewindable MMRs) to use for block processing.
pub txhashset: &'a mut txhashset::TxHashSet,
/// The active batch to use for block processing.
pub batch: store::Batch<'a>,
/// The verifier cache (caching verifier for rangeproofs and kernel signatures)
pub verifier_cache: Arc<RwLock<dyn VerifierCache>>,
}
// Check if we already know about this block for various reasons
// from cheapest to most expensive (delay hitting the db until last).
fn check_known(header: &BlockHeader, ctx: &mut BlockContext<'_>) -> Result<(), Error> {
check_known_head(header, ctx)?;
check_known_store(header, ctx)?;
Ok(())
}
/// Runs the block processing pipeline, including validation and finding a
/// place for the new block in the chain.
/// Returns new head if chain head updated.
pub fn process_block(b: &Block, ctx: &mut BlockContext<'_>) -> Result<Option<Tip>, Error> {
debug!(
"pipe: process_block {} at {} [in/out/kern: {}/{}/{}]",
b.hash(),
b.header.height,
b.inputs().len(),
b.outputs().len(),
b.kernels().len(),
);
// Check if we have already processed this block previously.
check_known(&b.header, ctx)?;
let head = ctx.batch.head()?;
let header_head = ctx.batch.header_head()?;
let is_next = b.header.prev_hash == head.last_block_h;
// Block is an orphan if we do not know about the previous full block.
// Skip this check if we have just processed the previous block
// or the full txhashset state (fast sync) at the previous block height.
let prev = prev_header_store(&b.header, &mut ctx.batch)?;
if !is_next && !ctx.batch.block_exists(&prev.hash())? {
return Err(ErrorKind::Orphan.into());
}
// Process the header for the block.
// Note: We still want to process the full block if we have seen this header before
// as we may have processed it "header first" and not yet processed the full block.
process_block_header(&b.header, ctx)?;
// Validate the block itself, make sure it is internally consistent.
// Use the verifier_cache for verifying rangeproofs and kernel signatures.
validate_block(b, ctx)?;
// Start a chain extension unit of work dependent on the success of the
// internal validation and saving operations
let block_sums = txhashset::extending(&mut ctx.txhashset, &mut ctx.batch, |mut extension| {
rewind_and_apply_fork(&prev, &header_head, extension)?;
// Check any coinbase being spent have matured sufficiently.
// This needs to be done within the context of a potentially
// rewound txhashset extension to reflect chain state prior
// to applying the new block.
verify_coinbase_maturity(b, &mut extension)?;
// Validate the block against the UTXO set.
validate_utxo(b, &mut extension)?;
// Using block_sums (utxo_sum, kernel_sum) for the previous block from the db
// we can verify_kernel_sums across the full UTXO sum and full kernel sum
// accounting for inputs/outputs/kernels in this new block.
// We know there are no double-spends etc. if this verifies successfully.
// Remember to save these to the db later on (regardless of extension rollback)
let block_sums = verify_block_sums(b, &extension.batch)?;
// Apply the block to the txhashset state.
// Validate the txhashset roots and sizes against the block header.
// Block is invalid if there are any discrepencies.
apply_block_to_txhashset(b, &mut extension)?;
// If applying this block does not increase the work on the chain then
// we know we have not yet updated the chain to produce a new chain head.
let head = extension.batch.head()?;
if !has_more_work(&b.header, &head) {
extension.force_rollback();
}
Ok(block_sums)
})?;
// Add the validated block to the db along with the corresponding block_sums.
// We do this even if we have not increased the total cumulative work
// so we can maintain multiple (in progress) forks.
add_block(b, &block_sums, &ctx.batch)?;
// If we have no "tail" then set it now.
if ctx.batch.tail().is_err() {
update_body_tail(&b.header, &ctx.batch)?;
}
if has_more_work(&b.header, &head) {
let head = Tip::from_header(&b.header);
update_head(&head, &mut ctx.batch)?;
Ok(Some(head))
} else {
Ok(None)
}
}
/// Sync a chunk of block headers.
/// This is only used during header sync.
pub fn sync_block_headers(
headers: &[BlockHeader],
ctx: &mut BlockContext<'_>,
) -> Result<(), Error> {
if headers.is_empty() {
return Ok(());
}
let first_header = headers.first().expect("first header");
let last_header = headers.last().expect("last header");
let prev_header = ctx.batch.get_previous_header(&first_header)?;
// Check if we know about all these headers. If so we can accept them quickly.
// If they *do not* increase total work on the sync chain we are done.
// If they *do* increase total work then we should process them to update sync_head.
let sync_head = ctx.batch.get_sync_head()?;
if let Ok(existing) = ctx.batch.get_block_header(&last_header.hash()) {
if !has_more_work(&existing, &sync_head) {
return Ok(());
}
}
txhashset::sync_extending(&mut ctx.txhashset, &mut ctx.batch, |extension| {
rewind_and_apply_header_fork(&prev_header, extension)?;
for header in headers {
extension.validate_root(header)?;
extension.apply_header(header)?;
add_block_header(header, &extension.batch)?;
}
Ok(())
})?;
// Validate all our headers now that we have added each "previous"
// header to the db in this batch above.
for header in headers {
validate_header(header, ctx)?;
}
if has_more_work(&last_header, &sync_head) {
update_sync_head(&Tip::from_header(&last_header), &mut ctx.batch)?;
}
Ok(())
}
/// Process a block header. Update the header MMR and corresponding header_head if this header
/// increases the total work relative to header_head.
/// Note: In contrast to processing a full block we treat "already known" as success
/// to allow processing to continue (for header itself).
pub fn process_block_header(header: &BlockHeader, ctx: &mut BlockContext<'_>) -> Result<(), Error> {
// Check this header is not an orphan, we must know about the previous header to continue.
let prev_header = ctx.batch.get_previous_header(&header)?;
// If this header is "known" then stop processing the header.
// Do not stop processing with an error though.
if check_known(header, ctx).is_err() {
return Ok(());
}
// If we have not yet seen the full block then check if we have seen this header.
// If it does not increase total_difficulty beyond our current header_head
// then we can (re)accept this header and process the full block (or request it).
// This header is on a fork and we should still accept it as the fork may eventually win.
let header_head = ctx.batch.header_head()?;
if let Ok(existing) = ctx.batch.get_block_header(&header.hash()) {
if !has_more_work(&existing, &header_head) {
return Ok(());
}
}
txhashset::header_extending(&mut ctx.txhashset, &mut ctx.batch, |extension| {
rewind_and_apply_header_fork(&prev_header, extension)?;
extension.validate_root(header)?;
extension.apply_header(header)?;
if !has_more_work(&header, &header_head) {
extension.force_rollback();
}
Ok(())
})?;
validate_header(header, ctx)?;
add_block_header(header, &ctx.batch)?;
// Update header_head independently of chain head (full blocks).
// If/when we process the corresponding full block we will update the
// chain head to match. This allows our header chain to extend safely beyond
// the full chain in a fork scenario without needing excessive rewinds to handle
// the temporarily divergent chains.
if has_more_work(&header, &header_head) {
update_header_head(&Tip::from_header(&header), &mut ctx.batch)?;
}
Ok(())
}
/// Quick in-memory check to fast-reject any block handled recently.
/// Keeps duplicates from the network in check.
/// Checks against the last_block_h and prev_block_h of the chain head.
fn check_known_head(header: &BlockHeader, ctx: &mut BlockContext<'_>) -> Result<(), Error> {
let head = ctx.batch.head()?;
let bh = header.hash();
if bh == head.last_block_h || bh == head.prev_block_h {
return Err(ErrorKind::Unfit("already known in head".to_string()).into());
}
Ok(())
}
// Check if this block is in the store already.
fn check_known_store(header: &BlockHeader, ctx: &mut BlockContext<'_>) -> Result<(), Error> {
match ctx.batch.block_exists(&header.hash()) {
Ok(true) => {
let head = ctx.batch.head()?;
if header.height < head.height.saturating_sub(50) {
// TODO - we flag this as an "abusive peer" but only in the case
// where we have the full block in our store.
// So this is not a particularly exhaustive check.
Err(ErrorKind::OldBlock.into())
} else {
Err(ErrorKind::Unfit("already known in store".to_string()).into())
}
}
Ok(false) => {
// Not yet processed this block, we can proceed.
Ok(())
}
Err(e) => {
return Err(ErrorKind::StoreErr(e, "pipe get this block".to_owned()).into());
}
}
}
// Find the previous header from the store.
// Return an Orphan error if we cannot find the previous header.
fn prev_header_store(
header: &BlockHeader,
batch: &mut store::Batch<'_>,
) -> Result<BlockHeader, Error> {
let prev = batch.get_previous_header(&header).map_err(|e| match e {
grin_store::Error::NotFoundErr(_) => ErrorKind::Orphan,
_ => ErrorKind::StoreErr(e, "check prev header".into()),
})?;
Ok(prev)
}
/// First level of block validation that only needs to act on the block header
/// to make it as cheap as possible. The different validations are also
/// arranged by order of cost to have as little DoS surface as possible.
fn validate_header(header: &BlockHeader, ctx: &mut BlockContext<'_>) -> Result<(), Error> {
// check version, enforces scheduled hard fork
if !consensus::valid_header_version(header.height, header.version) {
error!(
"Invalid block header version received ({:?}), maybe update Grin?",
header.version
);
return Err(ErrorKind::InvalidBlockVersion(header.version).into());
}
if header.timestamp > Utc::now() + Duration::seconds(12 * (consensus::BLOCK_TIME_SEC as i64)) {
// refuse blocks more than 12 blocks intervals in future (as in bitcoin)
// TODO add warning in p2p code if local time is too different from peers
return Err(ErrorKind::InvalidBlockTime.into());
}
if !ctx.opts.contains(Options::SKIP_POW) {
if !header.pow.is_primary() && !header.pow.is_secondary() {
return Err(ErrorKind::LowEdgebits.into());
}
let edge_bits = header.pow.edge_bits();
if !(ctx.pow_verifier)(header).is_ok() {
error!(
"pipe: error validating header with cuckoo edge_bits {}",
edge_bits
);
return Err(ErrorKind::InvalidPow.into());
}
}
// First I/O cost, delayed as late as possible.
let prev = prev_header_store(header, &mut ctx.batch)?;
// make sure this header has a height exactly one higher than the previous
// header
if header.height != prev.height + 1 {
return Err(ErrorKind::InvalidBlockHeight.into());
}
if header.timestamp <= prev.timestamp {
// prevent time warp attacks and some timestamp manipulations by forcing strict
// time progression
return Err(ErrorKind::InvalidBlockTime.into());
}
// verify the proof of work and related parameters
// at this point we have a previous block header
// we know the height increased by one
// so now we can check the total_difficulty increase is also valid
// check the pow hash shows a difficulty at least as large
// as the target difficulty
if !ctx.opts.contains(Options::SKIP_POW) {
if header.total_difficulty() <= prev.total_difficulty() {
return Err(ErrorKind::DifficultyTooLow.into());
}
let target_difficulty = header.total_difficulty() - prev.total_difficulty();
if header.pow.to_difficulty(header.height) < target_difficulty {
return Err(ErrorKind::DifficultyTooLow.into());
}
// explicit check to ensure total_difficulty has increased by exactly
// the _network_ difficulty of the previous block
// (during testnet1 we use _block_ difficulty here)
let child_batch = ctx.batch.child()?;
let diff_iter = store::DifficultyIter::from_batch(prev.hash(), child_batch);
let next_header_info = consensus::next_difficulty(header.height, diff_iter);
if target_difficulty != next_header_info.difficulty {
info!(
"validate_header: header target difficulty {} != {}",
target_difficulty.to_num(),
next_header_info.difficulty.to_num()
);
return Err(ErrorKind::WrongTotalDifficulty.into());
}
// check the secondary PoW scaling factor if applicable
if header.pow.secondary_scaling != next_header_info.secondary_scaling {
info!(
"validate_header: header secondary scaling {} != {}",
header.pow.secondary_scaling, next_header_info.secondary_scaling
);
return Err(ErrorKind::InvalidScaling.into());
}
}
Ok(())
}
fn validate_block(block: &Block, ctx: &mut BlockContext<'_>) -> Result<(), Error> {
let prev = ctx.batch.get_previous_header(&block.header)?;
block
.validate(&prev.total_kernel_offset, ctx.verifier_cache.clone())
.map_err(|e| ErrorKind::InvalidBlockProof(e))?;
Ok(())
}
/// Verify the block is not spending coinbase outputs before they have sufficiently matured.
fn verify_coinbase_maturity(block: &Block, ext: &txhashset::Extension<'_>) -> Result<(), Error> {
ext.utxo_view()
.verify_coinbase_maturity(&block.inputs(), block.header.height)
}
/// Verify kernel sums across the full utxo and kernel sets based on block_sums
/// of previous block accounting for the inputs|outputs|kernels of the new block.
fn verify_block_sums(b: &Block, batch: &store::Batch<'_>) -> Result<BlockSums, Error> {
// Retrieve the block_sums for the previous block.
let block_sums = batch.get_block_sums(&b.header.prev_hash)?;
// Overage is based purely on the new block.
// Previous block_sums have taken all previous overage into account.
let overage = b.header.overage();
// Offset on the other hand is the total kernel offset from the new block.
let offset = b.header.total_kernel_offset();
// Verify the kernel sums for the block_sums with the new block applied.
let (utxo_sum, kernel_sum) =
(block_sums, b as &dyn Committed).verify_kernel_sums(overage, offset)?;
Ok(BlockSums {
utxo_sum,
kernel_sum,
})
}
/// Fully validate the block by applying it to the txhashset extension.
/// Check both the txhashset roots and sizes are correct after applying the block.
fn apply_block_to_txhashset(
block: &Block,
ext: &mut txhashset::Extension<'_>,
) -> Result<(), Error> {
ext.validate_header_root(&block.header)?;
ext.apply_block(block)?;
ext.validate_roots()?;
ext.validate_sizes()?;
Ok(())
}
/// Officially adds the block to our chain.
/// Header must be added separately (assume this has been done previously).
fn add_block(b: &Block, block_sums: &BlockSums, batch: &store::Batch<'_>) -> Result<(), Error> {
batch
.save_block(b)
.map_err(|e| ErrorKind::StoreErr(e, "pipe save block".to_owned()))?;
batch.save_block_sums(&b.hash(), block_sums)?;
Ok(())
}
/// Update the block chain tail so we can know the exact tail of full blocks in this node
fn update_body_tail(bh: &BlockHeader, batch: &store::Batch<'_>) -> Result<(), Error> {
let tip = Tip::from_header(bh);
batch
.save_body_tail(&tip)
.map_err(|e| ErrorKind::StoreErr(e, "pipe save body tail".to_owned()))?;
debug!("body tail {} @ {}", bh.hash(), bh.height);
Ok(())
}
/// Officially adds the block header to our header chain.
fn add_block_header(bh: &BlockHeader, batch: &store::Batch<'_>) -> Result<(), Error> {
batch
.save_block_header(bh)
.map_err(|e| ErrorKind::StoreErr(e, "pipe save header".to_owned()))?;
Ok(())
}
fn update_head(head: &Tip, batch: &mut store::Batch<'_>) -> Result<(), Error> {
batch
.save_body_head(&head)
.map_err(|e| ErrorKind::StoreErr(e, "pipe save body".to_owned()))?;
debug!("head updated to {} at {}", head.last_block_h, head.height);
Ok(())
}
// Whether the provided block totals more work than the chain tip
fn has_more_work(header: &BlockHeader, head: &Tip) -> bool {
header.total_difficulty() > head.total_difficulty
}
/// Update the sync head so we can keep syncing from where we left off.
fn update_sync_head(head: &Tip, batch: &mut store::Batch<'_>) -> Result<(), Error> {
batch
.save_sync_head(&head)
.map_err(|e| ErrorKind::StoreErr(e, "pipe save sync head".to_owned()))?;
debug!(
"sync_head updated to {} at {}",
head.last_block_h, head.height
);
Ok(())
}
/// Update the header_head.
fn update_header_head(head: &Tip, batch: &mut store::Batch<'_>) -> Result<(), Error> {
batch
.save_header_head(&head)
.map_err(|e| ErrorKind::StoreErr(e, "pipe save header head".to_owned()))?;
debug!(
"header_head updated to {} at {}",
head.last_block_h, head.height
);
Ok(())
}
/// Rewind the header chain and reapply headers on a fork.
pub fn rewind_and_apply_header_fork(
header: &BlockHeader,
ext: &mut txhashset::HeaderExtension<'_>,
) -> Result<(), Error> {
let head = ext.head();
if header.hash() == head.last_block_h {
// Nothing to rewind and nothing to reapply. Done.
return Ok(());
}
let mut fork_hashes = vec![];
let mut current = header.clone();
while current.height > 0 && !ext.is_on_current_chain(&current).is_ok() {
fork_hashes.push(current.hash());
current = ext.batch.get_previous_header(&current)?;
}
fork_hashes.reverse();
let forked_header = current;
// Rewind the txhashset state back to the block where we forked from the most work chain.
ext.rewind(&forked_header)?;
// Re-apply all headers on this fork.
for h in fork_hashes {
let header = ext
.batch
.get_block_header(&h)
.map_err(|e| ErrorKind::StoreErr(e, format!("getting forked headers")))?;
ext.apply_header(&header)?;
}
Ok(())
}
/// Utility function to handle forks. From the forked block, jump backward
/// to find to fork point. Rewind the txhashset to the fork point and apply all
/// necessary blocks prior to the one being processed to set the txhashset in
/// the expected state.
pub fn rewind_and_apply_fork(
header: &BlockHeader,
header_head: &Tip,
ext: &mut txhashset::Extension<'_>,
) -> Result<(), Error> {
// TODO - Skip the "rewind and reapply" if everything is aligned and this is the "next" block.
// This will be significantly easier once we break out the header extension.
// Find the fork point where head and header_head diverge.
// We may need to rewind back to this fork point if they diverged
// prior to the fork point for the provided header.
let header_forked_header = {
let mut current = ext.batch.get_block_header(&header_head.last_block_h)?;
while current.height > 0 && !ext.is_on_current_chain(&current).is_ok() {
current = ext.batch.get_previous_header(&current)?;
}
current
};
// Find the fork point where the provided header diverges from our main chain.
// Account for the header fork point. Use the earliest fork point to determine
// where we need to rewind to. We need to do this
let (forked_header, fork_hashes) = {
let mut fork_hashes = vec![];
let mut current = header.clone();
while current.height > 0
&& (!ext.is_on_current_chain(&current).is_ok()
|| current.height > header_forked_header.height)
{
fork_hashes.push(current.hash());
current = ext.batch.get_previous_header(&current)?;
}
fork_hashes.reverse();
(current, fork_hashes)
};
// Rewind the txhashset state back to the block where we forked from the most work chain.
ext.rewind(&forked_header)?;
// Now re-apply all blocks on this fork.
for h in fork_hashes {
let fb = ext
.batch
.get_block(&h)
.map_err(|e| ErrorKind::StoreErr(e, format!("getting forked blocks")))?;
// Re-verify coinbase maturity along this fork.
verify_coinbase_maturity(&fb, ext)?;
// Validate the block against the UTXO set.
validate_utxo(&fb, ext)?;
// Re-verify block_sums to set the block_sums up on this fork correctly.
verify_block_sums(&fb, &ext.batch)?;
// Re-apply the blocks.
apply_block_to_txhashset(&fb, ext)?;
}
Ok(())
}
fn validate_utxo(block: &Block, ext: &txhashset::Extension<'_>) -> Result<(), Error> {
ext.utxo_view().validate_block(block)
}