grin/core/tests/consensus.rs
Ignotus Peverell 0967a5302b
Kernel sum and MMR sizes in block header (#1163)
* Add kernel commitments sum and kernel and output MMR sizes to block header
* Sum a block without including previous sums, cleanup. Blocks are now summed and validated based on their own totals and not the totals since genesis. This allows to get rid of BlockSum and simplified the setting of a new block's roots, kernel sum and MMR sizes. Fixes #116
* Additional kernel MMR validation to check all prior header roots successively
* Wallet tests fix
2018-06-21 02:30:22 +01:00

337 lines
11 KiB
Rust

// Copyright 2018 The Grin Developers
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! core consensus.rs tests (separated to de-clutter consensus.rs)
#[macro_use]
extern crate grin_core as core;
extern crate time;
use core::consensus::{next_difficulty, valid_header_version, TargetError,
DIFFICULTY_ADJUST_WINDOW, MEDIAN_TIME_WINDOW};
use core::core::target::Difficulty;
use core::global;
// Builds an iterator for next difficulty calculation with the provided
// constant time interval, difficulty and total length.
fn repeat(
interval: u64,
diff: u64,
len: u64,
cur_time: Option<u64>,
) -> Vec<Result<(u64, Difficulty), TargetError>> {
let cur_time = match cur_time {
Some(t) => t,
None => time::get_time().sec as u64,
};
// watch overflow here, length shouldn't be ridiculous anyhow
assert!(len < std::usize::MAX as u64);
let diffs = vec![Difficulty::from_num(diff); len as usize];
let times = (0..(len as usize)).map(|n| n * interval as usize).rev();
let pairs = times.zip(diffs.iter());
pairs
.map(|(t, d)| Ok((cur_time + t as u64, d.clone())))
.collect::<Vec<_>>()
}
// Creates a new chain with a genesis at a simulated difficulty
fn create_chain_sim(diff: u64) -> Vec<Result<(u64, Difficulty), TargetError>> {
println!(
"adding create: {}, {}",
time::get_time().sec,
Difficulty::from_num(diff)
);
vec![
Ok((time::get_time().sec as u64, Difficulty::from_num(diff))),
]
}
// Adds another 'block' to the iterator, so to speak, with difficulty calculated
// from the difficulty adjustment at interval seconds from the previous block
fn add_block(
interval: u64,
chain_sim: Vec<Result<(u64, Difficulty), TargetError>>,
) -> Vec<Result<(u64, Difficulty), TargetError>> {
let mut return_chain = chain_sim.clone();
// get last interval
let diff = next_difficulty(return_chain.clone()).unwrap();
let last_elem = chain_sim.first().as_ref().unwrap().as_ref().unwrap();
let time = last_elem.0 + interval;
return_chain.insert(0, Ok((time, diff)));
return_chain
}
// Adds many defined blocks
fn add_blocks(
intervals: Vec<u64>,
chain_sim: Vec<Result<(u64, Difficulty), TargetError>>,
) -> Vec<Result<(u64, Difficulty), TargetError>> {
let mut return_chain = chain_sim.clone();
for i in intervals {
return_chain = add_block(i, return_chain.clone());
}
return_chain
}
// Adds another n 'blocks' to the iterator, with difficulty calculated
fn add_block_repeated(
interval: u64,
chain_sim: Vec<Result<(u64, Difficulty), TargetError>>,
iterations: usize,
) -> Vec<Result<(u64, Difficulty), TargetError>> {
let mut return_chain = chain_sim.clone();
for _ in 0..iterations {
return_chain = add_block(interval, return_chain.clone());
}
return_chain
}
// Prints the contents of the iterator and its difficulties.. useful for
// tweaking
fn print_chain_sim(chain_sim: &Vec<Result<(u64, Difficulty), TargetError>>) {
let mut chain_sim = chain_sim.clone();
chain_sim.reverse();
let mut last_time = 0;
let mut first = true;
chain_sim.iter().enumerate().for_each(|(i, b)| {
let block = b.as_ref().unwrap();
if first {
last_time = block.0;
first = false;
}
println!(
"Height: {}, Time: {}, Interval: {}, Network difficulty:{}",
i,
block.0,
block.0 - last_time,
block.1
);
last_time = block.0;
});
}
fn repeat_offs(
from: u64,
interval: u64,
diff: u64,
len: u64,
) -> Vec<Result<(u64, Difficulty), TargetError>> {
map_vec!(
repeat(interval, diff, len, Some(from)),
|e| match e.clone() {
Err(e) => Err(e),
Ok((t, d)) => Ok((t, d)),
}
)
}
/// Checks different next_target adjustments and difficulty boundaries
#[test]
fn adjustment_scenarios() {
// Use production parameters for genesis diff
global::set_mining_mode(global::ChainTypes::Mainnet);
// Genesis block with initial diff
let chain_sim = create_chain_sim(global::initial_block_difficulty());
// Scenario 1) Hash power is massively over estimated, first block takes an hour
let chain_sim = add_block_repeated(3600, chain_sim, 2);
let chain_sim = add_block_repeated(1800, chain_sim, 2);
let chain_sim = add_block_repeated(900, chain_sim, 10);
println!("*********************************************************");
println!("Scenario 1) Grossly over-estimated genesis difficulty ");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
// Under-estimated difficulty
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_block_repeated(1, chain_sim, 5);
let chain_sim = add_block_repeated(20, chain_sim, 5);
println!("*********************************************************");
println!("Scenario 2) Grossly under-estimated genesis difficulty ");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
let just_enough = (DIFFICULTY_ADJUST_WINDOW + MEDIAN_TIME_WINDOW) as usize;
// Steady difficulty for a good while, then a sudden drop
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_block_repeated(10, chain_sim, just_enough as usize);
let chain_sim = add_block_repeated(600, chain_sim, 10);
println!("");
println!("*********************************************************");
println!("Scenario 3) Sudden drop in hashpower");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
// Sudden increase
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_block_repeated(60, chain_sim, just_enough as usize);
let chain_sim = add_block_repeated(10, chain_sim, 10);
println!("");
println!("*********************************************************");
println!("Scenario 4) Sudden increase in hashpower");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
// Oscillations
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_block_repeated(60, chain_sim, just_enough as usize);
let chain_sim = add_block_repeated(10, chain_sim, 10);
let chain_sim = add_block_repeated(60, chain_sim, 20);
let chain_sim = add_block_repeated(10, chain_sim, 10);
println!("");
println!("*********************************************************");
println!("Scenario 5) Oscillations in hashpower");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
// Actual testnet 2 timings
let testnet2_intervals = [
2880, 16701, 1882, 3466, 614, 605, 1551, 538, 931, 23, 690, 1397, 2112, 2058, 605, 721,
2148, 1605, 134, 1234, 1569, 482, 1775, 2732, 540, 958, 883, 3475, 518, 1346, 1926, 780,
865, 269, 1079, 141, 105, 781, 289, 256, 709, 68, 165, 1813, 3899, 1458, 955, 2336, 239,
674, 1059, 157, 214, 15, 157, 558, 1945, 1677, 1825, 1307, 1973, 660, 77, 3134, 410, 347,
537, 649, 325, 370, 2271, 106, 19, 329,
];
global::set_mining_mode(global::ChainTypes::Testnet2);
let chain_sim = create_chain_sim(global::initial_block_difficulty());
let chain_sim = add_blocks(testnet2_intervals.to_vec(), chain_sim);
println!("");
println!("*********************************************************");
println!("Scenario 6) Testnet2");
println!("*********************************************************");
print_chain_sim(&chain_sim);
println!("*********************************************************");
}
/// Checks different next_target adjustments and difficulty boundaries
#[test]
fn next_target_adjustment() {
global::set_mining_mode(global::ChainTypes::AutomatedTesting);
let cur_time = time::get_time().sec as u64;
assert_eq!(
next_difficulty(vec![Ok((cur_time, Difficulty::one()))]).unwrap(),
Difficulty::one()
);
assert_eq!(
next_difficulty(repeat(60, 1, DIFFICULTY_ADJUST_WINDOW, None)).unwrap(),
Difficulty::one()
);
// Check we don't get stuck on difficulty 1
assert_ne!(
next_difficulty(repeat(1, 10, DIFFICULTY_ADJUST_WINDOW, None)).unwrap(),
Difficulty::one()
);
// just enough data, right interval, should stay constant
let just_enough = DIFFICULTY_ADJUST_WINDOW + MEDIAN_TIME_WINDOW;
assert_eq!(
next_difficulty(repeat(60, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1000)
);
// checking averaging works
let sec = DIFFICULTY_ADJUST_WINDOW / 2 + MEDIAN_TIME_WINDOW;
let mut s1 = repeat(60, 500, sec, Some(cur_time));
let mut s2 = repeat_offs(
cur_time + (sec * 60) as u64,
60,
1500,
DIFFICULTY_ADJUST_WINDOW / 2,
);
s2.append(&mut s1);
assert_eq!(next_difficulty(s2).unwrap(), Difficulty::from_num(1000));
// too slow, diff goes down
assert_eq!(
next_difficulty(repeat(90, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(857)
);
assert_eq!(
next_difficulty(repeat(120, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(750)
);
// too fast, diff goes up
assert_eq!(
next_difficulty(repeat(55, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1028)
);
assert_eq!(
next_difficulty(repeat(45, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1090)
);
// hitting lower time bound, should always get the same result below
assert_eq!(
next_difficulty(repeat(0, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1500)
);
assert_eq!(
next_difficulty(repeat(0, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(1500)
);
// hitting higher time bound, should always get the same result above
assert_eq!(
next_difficulty(repeat(300, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(500)
);
assert_eq!(
next_difficulty(repeat(400, 1000, just_enough, None)).unwrap(),
Difficulty::from_num(500)
);
// We should never drop below 1
assert_eq!(
next_difficulty(repeat(90, 0, just_enough, None)).unwrap(),
Difficulty::from_num(1)
);
}
#[test]
fn hard_fork_1() {
assert!(valid_header_version(0, 1));
assert!(valid_header_version(10, 1));
assert!(!valid_header_version(10, 2));
assert!(valid_header_version(250_000, 1));
assert!(!valid_header_version(250_001, 1));
assert!(!valid_header_version(500_000, 1));
assert!(!valid_header_version(250_001, 2));
}
// #[test]
// fn hard_fork_2() {
// assert!(valid_header_version(0, 1));
// assert!(valid_header_version(10, 1));
// assert!(valid_header_version(10, 2));
// assert!(valid_header_version(250_000, 1));
// assert!(!valid_header_version(250_001, 1));
// assert!(!valid_header_version(500_000, 1));
// assert!(valid_header_version(250_001, 2));
// assert!(valid_header_version(500_000, 2));
// assert!(!valid_header_version(500_001, 2));
// }