grin/pow/src/cuckoo.rs
Yeastplume 045f5bb4da POW refactor (#100)
* Adding output stats from plugin, when available
* adding grin config
* moving pow crate from core/pow to it's own crate
* moving POW/mining stuff into pow module, and removing mining dependency from chain
* refactored most of mining into pow module...miner.rs still in server
* update grin tests
* updating genesis block mining to use configured miner, if available
* chain tests back into chain, done with pow refactor
* use tag of cuckoo-miner for pr
2017-08-22 18:23:54 +00:00

415 lines
12 KiB
Rust

// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of Cuckoo Cycle designed by John Tromp. Ported to Rust from
//! the C and Java code at https://github.com/tromp/cuckoo. Note that only the
//! simple miner is included, mostly for testing purposes. John Tromp's Tomato
//! miner will be much faster in almost every environment.
use std::collections::HashSet;
use std::cmp;
use blake2;
use core::core::Proof;
use siphash::siphash24;
use MiningWorker;
const MAXPATHLEN: usize = 8192;
/// A cuckoo-cycle related error
#[derive(Debug)]
pub enum Error {
/// Unable to find a short enough path
Path,
/// Unable to find a solution
NoSolution,
}
/// An edge in the Cuckoo graph, simply references two u64 nodes.
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Eq, Ord, Hash)]
struct Edge {
u: u64,
v: u64,
}
/// Cuckoo cycle context
pub struct Cuckoo {
mask: u64,
size: u64,
v: [u64; 4],
}
impl Cuckoo {
/// Initializes a new Cuckoo Cycle setup, using the provided byte array to
/// generate a seed. In practice for PoW applications the byte array is a
/// serialized block header.
pub fn new(header: &[u8], sizeshift: u32) -> Cuckoo {
let size = 1 << sizeshift;
let hashed=blake2::blake2b::blake2b(32, &[], header);
let hashed=hashed.as_bytes();
let k0 = u8_to_u64(hashed, 0);
let k1 = u8_to_u64(hashed, 8);
let mut v = [0; 4];
v[0] = k0 ^ 0x736f6d6570736575;
v[1] = k1 ^ 0x646f72616e646f6d;
v[2] = k0 ^ 0x6c7967656e657261;
v[3] = k1 ^ 0x7465646279746573;
Cuckoo {
v: v,
size: size,
mask: (1 << sizeshift) / 2 - 1,
}
}
/// Generates a node in the cuckoo graph generated from our seed. A node is
/// simply materialized as a u64 from a nonce and an offset (generally 0 or
/// 1).
fn new_node(&self, nonce: u64, uorv: u64) -> u64 {
return ((siphash24(self.v, 2 * nonce + uorv) & self.mask) << 1) | uorv;
}
/// Creates a new edge in the cuckoo graph generated by our seed from a
/// nonce. Generates two node coordinates from the nonce and links them
/// together.
fn new_edge(&self, nonce: u64) -> Edge {
Edge {
u: self.new_node(nonce, 0),
v: self.new_node(nonce, 1),
}
}
/// Assuming increasing nonces all smaller than easiness, verifies the
/// nonces form a cycle in a Cuckoo graph. Each nonce generates an edge, we
/// build the nodes on both side of that edge and count the connections.
pub fn verify(&self, proof: Proof, ease: u64) -> bool {
let easiness = ease * (self.size as u64) / 100;
let nonces = proof.to_u64s();
let mut us = vec![0; proof.proof_size];
let mut vs = vec![0; proof.proof_size];
for n in 0..proof.proof_size {
if nonces[n] >= easiness || (n != 0 && nonces[n] <= nonces[n - 1]) {
return false;
}
us[n] = self.new_node(nonces[n], 0);
vs[n] = self.new_node(nonces[n], 1);
}
let mut i = 0;
let mut count = proof.proof_size;
loop {
let mut j = i;
for k in 0..proof.proof_size {
// find unique other j with same vs[j]
if k != i && vs[k] == vs[i] {
if j != i {
return false;
}
j = k;
}
}
if j == i {
return false;
}
i = j;
for k in 0..proof.proof_size {
// find unique other i with same us[i]
if k != j && us[k] == us[j] {
if i != j {
return false;
}
i = k;
}
}
if i == j {
return false;
}
count -= 2;
if i == 0 {
break;
}
}
count == 0
}
}
/// Miner for the Cuckoo Cycle algorithm. While the verifier will work for
/// graph sizes up to a u64, the miner is limited to u32 to be more memory
/// compact (so shift <= 32). Non-optimized for now and and so mostly used for
/// tests, being impractical with sizes greater than 2^22.
pub struct Miner {
easiness: u64,
proof_size: usize,
cuckoo: Option<Cuckoo>,
graph: Vec<u32>,
sizeshift: u32,
}
impl MiningWorker for Miner {
/// Creates a new miner
fn new(ease: u32,
sizeshift: u32,
proof_size: usize) -> Miner {
let size = 1 << sizeshift;
let graph = vec![0; size + 1];
let easiness = (ease as u64) * (size as u64) / 100;
Miner {
easiness: easiness,
cuckoo: None,
graph: graph,
sizeshift: sizeshift,
proof_size: proof_size,
}
}
fn mine(&mut self, header: &[u8]) -> Result<Proof, Error> {
let size = 1 << self.sizeshift;
self.graph = vec![0; size + 1];
self.cuckoo=Some(Cuckoo::new(header, self.sizeshift));
self.mine_impl()
}
}
/// What type of cycle we have found?
enum CycleSol {
/// A cycle of the right length is a valid proof.
ValidProof(Vec<u32>),
/// A cycle of the wrong length is great, but not a proof.
InvalidCycle(usize),
/// No cycles have been found.
NoCycle,
}
impl Miner {
/// Searches for a solution
pub fn mine_impl(&mut self) -> Result<Proof, Error> {
let mut us = [0; MAXPATHLEN];
let mut vs = [0; MAXPATHLEN];
for nonce in 0..self.easiness {
us[0] = self.cuckoo.as_mut().unwrap().new_node(nonce, 0) as u32;
vs[0] = self.cuckoo.as_mut().unwrap().new_node(nonce, 1) as u32;
let u = self.graph[us[0] as usize];
let v = self.graph[vs[0] as usize];
if us[0] == 0 {
continue; // ignore duplicate edges
}
let nu = try!(self.path(u, &mut us)) as usize;
let nv = try!(self.path(v, &mut vs)) as usize;
let sol = self.find_sol(nu, &us, nv, &vs);
match sol {
CycleSol::ValidProof(res) => {
return Ok(Proof::new(res.to_vec()));
},
CycleSol::InvalidCycle(_) => continue,
CycleSol::NoCycle => {
self.update_graph(nu, &us, nv, &vs);
}
}
}
Err(Error::NoSolution)
}
fn path(&self, mut u: u32, us: &mut [u32]) -> Result<u32, Error> {
let mut nu = 0;
while u != 0 {
nu += 1;
if nu >= MAXPATHLEN {
while nu != 0 && us[(nu - 1) as usize] != u {
nu -= 1;
}
return Err(Error::Path);
}
us[nu as usize] = u;
u = self.graph[u as usize];
}
Ok(nu as u32)
}
fn update_graph(&mut self, mut nu: usize, us: &[u32], mut nv: usize, vs: &[u32]) {
if nu < nv {
while nu != 0 {
nu -= 1;
self.graph[us[nu + 1] as usize] = us[nu];
}
self.graph[us[0] as usize] = vs[0];
} else {
while nv != 0 {
nv -= 1;
self.graph[vs[nv + 1] as usize] = vs[nv];
}
self.graph[vs[0] as usize] = us[0];
}
}
fn find_sol(&mut self, mut nu: usize, us: &[u32], mut nv: usize, vs: &[u32]) -> CycleSol {
if us[nu] == vs[nv] {
let min = cmp::min(nu, nv);
nu -= min;
nv -= min;
while us[nu] != vs[nv] {
nu += 1;
nv += 1;
}
if nu + nv + 1 == self.proof_size {
self.solution(&us, nu as u32, &vs, nv as u32)
} else {
CycleSol::InvalidCycle(nu + nv + 1)
}
} else {
CycleSol::NoCycle
}
}
fn solution(&mut self, us: &[u32], mut nu: u32, vs: &[u32], mut nv: u32) -> CycleSol {
let mut cycle = HashSet::new();
cycle.insert(Edge {
u: us[0] as u64,
v: vs[0] as u64,
});
while nu != 0 {
// u's in even position; v's in odd
nu -= 1;
cycle.insert(Edge {
u: us[((nu + 1) & !1) as usize] as u64,
v: us[(nu | 1) as usize] as u64,
});
}
while nv != 0 {
// u's in odd position; v's in even
nv -= 1;
cycle.insert(Edge {
u: vs[(nv | 1) as usize] as u64,
v: vs[((nv + 1) & !1) as usize] as u64,
});
}
let mut n = 0;
let mut sol = vec![0; self.proof_size];
for nonce in 0..self.easiness {
let edge = self.cuckoo.as_mut().unwrap().new_edge(nonce);
if cycle.contains(&edge) {
sol[n] = nonce as u32;
n += 1;
cycle.remove(&edge);
}
}
return if n == self.proof_size {
CycleSol::ValidProof(sol)
} else {
CycleSol::NoCycle
};
}
}
/// Utility to transform a 8 bytes of a byte array into a u64.
fn u8_to_u64(p:&[u8], i: usize) -> u64 {
(p[i] as u64) | (p[i + 1] as u64) << 8 | (p[i + 2] as u64) << 16 | (p[i + 3] as u64) << 24 |
(p[i + 4] as u64) << 32 | (p[i + 5] as u64) << 40 |
(p[i + 6] as u64) << 48 | (p[i + 7] as u64) << 56
}
#[cfg(test)]
mod test {
use super::*;
use core::core::Proof;
static V1:[u32;42] = [0x1fe9, 0x2050, 0x4581, 0x6322, 0x65ab, 0xb3c1, 0xc1a4,
0xe257, 0x106ae, 0x17b11, 0x202d4, 0x2705d, 0x2deb2, 0x2f80e,
0x32298, 0x34782, 0x35c5a, 0x37458, 0x38f28, 0x406b2, 0x40e34,
0x40fc6, 0x42220, 0x42d13, 0x46c0f, 0x4fd47, 0x55ad2, 0x598f7,
0x5aa8f, 0x62aa3, 0x65725, 0x65dcb, 0x671c7, 0x6eb20, 0x752fe,
0x7594f, 0x79b9c, 0x7f775, 0x81635, 0x8401c, 0x844e5, 0x89fa8];
static V2:[u32;42] = [0x2a37, 0x7557, 0xa3c3, 0xfce6, 0x1248e, 0x15837, 0x1827f,
0x18a93, 0x1a7dd, 0x1b56b, 0x1ceb4, 0x1f962, 0x1fe2a, 0x29cb9,
0x2f30e, 0x2f771, 0x336bf, 0x34355, 0x391d7, 0x39495, 0x3be0c,
0x463be, 0x4d0c2, 0x4eead, 0x50214, 0x520de, 0x52a86, 0x53818,
0x53b3b, 0x54c0b, 0x572fa, 0x5d79c, 0x5e3c2, 0x6769e, 0x6a0fe,
0x6d835, 0x6fc7c, 0x70f03, 0x79d4a, 0x7b03e, 0x81e09, 0x9bd44];
static V3:[u32;42] = [0x8158, 0x9f18, 0xc4ba, 0x108c7, 0x11caa, 0x13b82, 0x1618f,
0x1c83b, 0x1ec89, 0x24354, 0x28864, 0x2a0fb, 0x2ce50, 0x2e8fa,
0x32b36, 0x343e6, 0x34dc9, 0x36881, 0x3ffca, 0x40f79, 0x42721,
0x43b8c, 0x44b9d, 0x47ed3, 0x4cd34, 0x5278a, 0x5ab64, 0x5b4d4,
0x5d842, 0x5fa33, 0x6464e, 0x676ee, 0x685d6, 0x69df0, 0x6a5fd,
0x6bda3, 0x72544, 0x77974, 0x7908c, 0x80e67, 0x81ef4, 0x8d882];
// cuckoo28 at 50% edges of letter 'u'
static V4:[u32;42] = [0x1CBBFD, 0x2C5452, 0x520338, 0x6740C5, 0x8C6997, 0xC77150, 0xFD4972,
0x1060FA7, 0x11BFEA0, 0x1343E8D, 0x14CE02A, 0x1533515, 0x1715E61, 0x1996D9B,
0x1CB296B, 0x1FCA180, 0x209A367, 0x20AD02E, 0x23CD2E4, 0x2A3B360, 0x2DD1C0C,
0x333A200, 0x33D77BC, 0x3620C78, 0x3DD7FB8, 0x3FBFA49, 0x41BDED2, 0x4A86FD9,
0x570DE24, 0x57CAB86, 0x594B886, 0x5C74C94, 0x5DE7572, 0x60ADD6F, 0x635918B,
0x6C9E120, 0x6EFA583, 0x7394ACA, 0x7556A23, 0x77F70AA, 0x7CF750A, 0x7F60790];
/// Find a 42-cycle on Cuckoo20 at 75% easiness and verifiy against a few
/// known cycle proofs
/// generated by other implementations.
#[test]
fn mine20_vectors() {
let nonces1 = Miner::new(75, 20, 42).mine(&[49]).unwrap();
assert_eq!(Proof::new(V1.to_vec()), nonces1);
let nonces2 = Miner::new(70, 20, 42).mine(&[50]).unwrap();
assert_eq!(Proof::new(V2.to_vec()), nonces2);
let nonces3 = Miner::new(70, 20, 42).mine(&[51]).unwrap();
assert_eq!(Proof::new(V3.to_vec()), nonces3);
}
#[test]
fn validate20_vectors() {
assert!(Cuckoo::new(&[49], 20).verify(Proof::new(V1.to_vec().clone()), 75));
assert!(Cuckoo::new(&[50], 20).verify(Proof::new(V2.to_vec().clone()), 70));
assert!(Cuckoo::new(&[51], 20).verify(Proof::new(V3.to_vec().clone()), 70));
}
#[test]
fn validate28_vectors() {
let mut test_header=[0;32];
test_header[0]=24;
assert!(Cuckoo::new(&test_header, 28).verify(Proof::new(V4.to_vec().clone()), 50));
}
#[test]
fn validate_fail() {
// edge checks
assert!(!Cuckoo::new(&[49], 20).verify(Proof::new(vec![0; 42]), 75));
assert!(!Cuckoo::new(&[49], 20).verify(Proof::new(vec![0xffff; 42]), 75));
// wrong data for proof
assert!(!Cuckoo::new(&[50], 20).verify(Proof::new(V1.to_vec().clone()), 75));
let mut test_header=[0;32];
test_header[0]=24;
assert!(!Cuckoo::new(&test_header, 20).verify(Proof::new(V4.to_vec().clone()), 50));
}
#[test]
fn mine20_validate() {
// cuckoo20
for n in 1..5 {
let h = [n; 32];
let nonces = Miner::new(75, 20, 42).mine(&h).unwrap();
assert!(Cuckoo::new(&h, 20).verify(nonces, 75));
}
// cuckoo18
for n in 1..5 {
let h = [n; 32];
let nonces = Miner::new(75, 18, 42).mine(&h).unwrap();
assert!(Cuckoo::new(&h, 18).verify(nonces, 75));
}
}
}