grin/pool/tests/block_reconciliation.rs
Antioch Peverell 028b14d9d9
Replace rm_log with leaf_set (compact bitmap) (#1147)
* only store leaves in rm_log

* cleanup

* commit

* add failing test to cover case where we compact
an already compacted data file

* fix the logic for pruning the data file

* rm_log only contains leaves
prunelist only contains non-leaf subtree roots

* cleanup

* commit

* bitmap impl running in parallel

* rustfmt

* this is better - rewind unremoves outpu pos spent by rewound inputs

* commit

* commit

* pass bitmap around when rewinding

* store and retrieve input bitmap per block from the db

* Replace the RemoveLog with the UTXO set.

* utxo set starting to pass tests

* stuff works...

* split store types out
added some tests to compare the performance of the rm_log and the proposed utxo_set

* pull prune_list out into standalone file

* cleanup, get rid of unused height param

* cleanup and add doc comments

* add support for migrating rm_log to utxo_set

* take snapshot of utxo file during fast sync
implement migration of rm_log -> utxo_set

* rename rewound_copy to snapshot

* fixup pmmr tests to reflect cutoff_pos

* cleanup unused import

* check_compact needs to rewind the utxo_set as appropriate

* fix pool tests

* fixup core tests

* cache block_input_bitmaps via LruCache in store

* cache block header on initial write to db

* rename utxo_set -> leaf_set
and remove references to "spent" in grin_store

* better document the rewind behavior
2018-06-18 11:18:38 -04:00

221 lines
8.1 KiB
Rust

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
extern crate blake2_rfc as blake2;
extern crate grin_chain as chain;
extern crate grin_core as core;
extern crate grin_keychain as keychain;
extern crate grin_pool as pool;
extern crate grin_util as util;
extern crate grin_wallet as wallet;
extern crate rand;
extern crate time;
pub mod common;
use std::sync::{Arc, RwLock};
use core::core::{Block, BlockHeader};
use chain::types::Tip;
use chain::{txhashset, ChainStore};
use common::{clean_output_dir, test_setup, test_source, test_transaction,
test_transaction_spending_coinbase, ChainAdapter};
use core::core::target::Difficulty;
use keychain::{ExtKeychain, Keychain};
use wallet::libtx;
#[test]
fn test_transaction_pool_block_reconciliation() {
let keychain: ExtKeychain = Keychain::from_random_seed().unwrap();
let db_root = ".grin_block_reconciliation".to_string();
clean_output_dir(db_root.clone());
let chain = ChainAdapter::init(db_root.clone()).unwrap();
// Initialize the chain/txhashset with an initial block
// so we have a non-empty UTXO set.
let header = {
let height = 1;
let key_id = keychain.derive_key_id(height as u32).unwrap();
let reward = libtx::reward::output(&keychain, &key_id, 0, height).unwrap();
let block = Block::new(&BlockHeader::default(), vec![], Difficulty::one(), reward).unwrap();
let mut txhashset = chain.txhashset.write().unwrap();
txhashset::extending(&mut txhashset, |extension| extension.apply_block(&block)).unwrap();
let tip = Tip::from_block(&block.header);
chain.store.save_block_header(&block.header).unwrap();
chain.store.save_head(&tip).unwrap();
block.header
};
// Initialize a new pool with our chain adapter.
let pool = RwLock::new(test_setup(&Arc::new(chain.clone())));
// Now create tx to spend that first coinbase (now matured).
// Provides us with some useful outputs to test with.
let initial_tx = test_transaction_spending_coinbase(&keychain, &header, vec![10, 20, 30, 40]);
let header = {
let key_id = keychain.derive_key_id(2).unwrap();
let fees = initial_tx.fee();
let reward = libtx::reward::output(&keychain, &key_id, fees, 0).unwrap();
let block = Block::new(&header, vec![initial_tx], Difficulty::one(), reward).unwrap();
{
let mut txhashset = chain.txhashset.write().unwrap();
txhashset::extending(&mut txhashset, |extension| {
extension.apply_block(&block)?;
Ok(())
}).unwrap();
}
let tip = Tip::from_block(&block.header);
chain.store.save_block_header(&block.header).unwrap();
chain.store.save_head(&tip).unwrap();
block.header
};
// Preparation: We will introduce three root pool transactions.
// 1. A transaction that should be invalidated because it is exactly
// contained in the block.
// 2. A transaction that should be invalidated because the input is
// consumed in the block, although it is not exactly consumed.
// 3. A transaction that should remain after block reconciliation.
let block_transaction = test_transaction(&keychain, vec![10], vec![8]);
let conflict_transaction = test_transaction(&keychain, vec![20], vec![12, 6]);
let valid_transaction = test_transaction(&keychain, vec![30], vec![13, 15]);
// We will also introduce a few children:
// 4. A transaction that descends from transaction 1, that is in
// turn exactly contained in the block.
let block_child = test_transaction(&keychain, vec![8], vec![5, 1]);
// 5. A transaction that descends from transaction 4, that is not
// contained in the block at all and should be valid after
// reconciliation.
let pool_child = test_transaction(&keychain, vec![5], vec![3]);
// 6. A transaction that descends from transaction 2 that does not
// conflict with anything in the block in any way, but should be
// invalidated (orphaned).
let conflict_child = test_transaction(&keychain, vec![12], vec![2]);
// 7. A transaction that descends from transaction 2 that should be
// valid due to its inputs being satisfied by the block.
let conflict_valid_child = test_transaction(&keychain, vec![6], vec![4]);
// 8. A transaction that descends from transaction 3 that should be
// invalidated due to an output conflict.
let valid_child_conflict = test_transaction(&keychain, vec![13], vec![9]);
// 9. A transaction that descends from transaction 3 that should remain
// valid after reconciliation.
let valid_child_valid = test_transaction(&keychain, vec![15], vec![11]);
// 10. A transaction that descends from both transaction 6 and
// transaction 9
let mixed_child = test_transaction(&keychain, vec![2, 11], vec![7]);
let txs_to_add = vec![
block_transaction,
conflict_transaction,
valid_transaction.clone(),
block_child,
pool_child.clone(),
conflict_child,
conflict_valid_child.clone(),
valid_child_conflict.clone(),
valid_child_valid.clone(),
mixed_child,
];
// First we add the above transactions to the pool.
// All should be accepted.
{
let mut write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), 0);
for tx in &txs_to_add {
write_pool
.add_to_pool(test_source(), tx.clone(), false)
.unwrap();
}
assert_eq!(write_pool.total_size(), txs_to_add.len());
}
// Now we prepare the block that will cause the above conditions to be met.
// First, the transactions we want in the block:
// - Copy of 1
let block_tx_1 = test_transaction(&keychain, vec![10], vec![8]);
// - Conflict w/ 2, satisfies 7
let block_tx_2 = test_transaction(&keychain, vec![20], vec![6]);
// - Copy of 4
let block_tx_3 = test_transaction(&keychain, vec![8], vec![5, 1]);
// - Output conflict w/ 8
let block_tx_4 = test_transaction(&keychain, vec![40], vec![9, 31]);
let block_txs = vec![block_tx_1, block_tx_2, block_tx_3, block_tx_4];
// Now apply this block.
let block = {
let key_id = keychain.derive_key_id(3).unwrap();
let fees = block_txs.iter().map(|tx| tx.fee()).sum();
let reward = libtx::reward::output(&keychain, &key_id, fees, 0).unwrap();
let block = Block::new(&header, block_txs, Difficulty::one(), reward).unwrap();
{
let mut txhashset = chain.txhashset.write().unwrap();
txhashset::extending(&mut txhashset, |extension| {
extension.apply_block(&block)?;
Ok(())
}).unwrap();
}
let tip = Tip::from_block(&block.header);
chain.store.save_block_header(&block.header).unwrap();
chain.store.save_head(&tip).unwrap();
block
};
// Check the pool still contains everything we expect at this point.
{
let write_pool = pool.write().unwrap();
assert_eq!(write_pool.total_size(), txs_to_add.len());
}
// And reconcile the pool with this latest block.
{
let mut write_pool = pool.write().unwrap();
write_pool.reconcile_block(&block).unwrap();
// TODO - this is the "correct" behavior (see below)
// assert_eq!(write_pool.total_size(), 4);
// assert_eq!(write_pool.txpool.entries[0].tx, valid_transaction);
// assert_eq!(write_pool.txpool.entries[1].tx, pool_child);
// assert_eq!(write_pool.txpool.entries[2].tx, conflict_valid_child);
// assert_eq!(write_pool.txpool.entries[3].tx, valid_child_valid);
//
// TODO - once the hash() vs hash_with_index(pos - 1) change is made in
// txhashset.apply_output() TODO - and we no longer incorrectly allow
// duplicate outputs in the MMR TODO - then this test will fail
//
assert_eq!(write_pool.total_size(), 5);
assert_eq!(write_pool.txpool.entries[0].tx, valid_transaction);
assert_eq!(write_pool.txpool.entries[1].tx, pool_child);
assert_eq!(write_pool.txpool.entries[2].tx, conflict_valid_child);
assert_eq!(write_pool.txpool.entries[3].tx, valid_child_conflict);
assert_eq!(write_pool.txpool.entries[4].tx, valid_child_valid);
}
}