grin/core/tests/core.rs

653 lines
19 KiB
Rust

// Copyright 2021 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Core tests
pub mod common;
use self::core::core::block::BlockHeader;
use self::core::core::block::Error::KernelLockHeight;
use self::core::core::hash::{Hashed, ZERO_HASH};
use self::core::core::{
aggregate, deaggregate, FeeFields, KernelFeatures, Output, OutputFeatures, OutputIdentifier,
Transaction, TxKernel, Weighting,
};
use self::core::libtx::build::{self, initial_tx, input, output, with_excess};
use self::core::libtx::{aggsig, ProofBuilder};
use self::core::{global, ser};
use crate::common::{new_block, tx1i1o, tx1i2o, tx2i1o};
use grin_core as core;
use keychain::{BlindingFactor, ExtKeychain, Keychain};
use util::static_secp_instance;
// Setup test with AutomatedTesting chain_type;
fn test_setup() {
global::set_local_chain_type(global::ChainTypes::AutomatedTesting);
}
#[test]
fn simple_tx_ser() {
let tx = tx2i1o();
// Default protocol version (3).
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &tx).expect("serialization failed");
assert_eq!(vec.len(), 945);
// Explicit protocol version 3.
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(3), &tx).expect("serialization failed");
assert_eq!(vec.len(), 945);
// We need to convert the tx to v2 compatibility with "features and commitment" inputs
// to serialize to any previous protocol version.
// Normally we would do this conversion against the utxo and txpool but we fake it here for testing.
let inputs: Vec<_> = tx.inputs().into();
let inputs: Vec<_> = inputs
.iter()
.map(|input| OutputIdentifier {
features: OutputFeatures::Plain,
commit: input.commitment(),
})
.collect();
let tx = Transaction {
body: tx.body.replace_inputs(inputs.as_slice().into()),
..tx
};
// Explicit protocol version 1.
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(1), &tx).expect("serialization failed");
assert_eq!(vec.len(), 955);
// Explicit protocol version 2.
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(2), &tx).expect("serialization failed");
assert_eq!(vec.len(), 947);
// Check we can still serialize to protocol version 3 without explicitly converting the tx.
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(3), &tx).expect("serialization failed");
assert_eq!(vec.len(), 945);
// And default protocol version for completeness.
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &tx).expect("serialization failed");
assert_eq!(vec.len(), 945);
}
#[test]
fn simple_tx_ser_deser() {
test_setup();
let tx = tx2i1o();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &tx).expect("serialization failed");
let dtx: Transaction = ser::deserialize_default(&mut &vec[..]).unwrap();
assert_eq!(dtx.fee(), 2);
assert_eq!(dtx.inputs().len(), 2);
assert_eq!(dtx.outputs().len(), 1);
assert_eq!(tx.hash(), dtx.hash());
}
#[test]
fn tx_double_ser_deser() {
test_setup();
// checks serializing doesn't mess up the tx and produces consistent results
let btx = tx2i1o();
let mut vec = Vec::new();
assert!(ser::serialize_default(&mut vec, &btx).is_ok());
let dtx: Transaction = ser::deserialize_default(&mut &vec[..]).unwrap();
let mut vec2 = Vec::new();
assert!(ser::serialize_default(&mut vec2, &btx).is_ok());
let dtx2: Transaction = ser::deserialize_default(&mut &vec2[..]).unwrap();
assert_eq!(btx.hash(), dtx.hash());
assert_eq!(dtx.hash(), dtx2.hash());
}
#[test]
fn test_zero_commit_fails() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
// blinding should fail as signing with a zero r*G shouldn't work
let res = build::transaction(
KernelFeatures::Plain {
fee: FeeFields::zero(),
},
&[input(10, key_id1.clone()), output(10, key_id1)],
&keychain,
&builder,
);
assert!(res.is_err());
}
#[test]
fn build_tx_kernel() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
// first build a valid tx with corresponding blinding factor
let tx = build::transaction(
KernelFeatures::Plain { fee: 2.into() },
&[input(10, key_id1), output(5, key_id2), output(3, key_id3)],
&keychain,
&builder,
)
.unwrap();
// check the tx is valid
tx.validate(Weighting::AsTransaction).unwrap();
// check the kernel is also itself valid
assert_eq!(tx.kernels().len(), 1);
let kern = &tx.kernels()[0];
kern.verify().unwrap();
assert_eq!(kern.features, KernelFeatures::Plain { fee: 2.into() });
assert_eq!(2, tx.fee());
}
// Proof of concept demonstrating we can build two transactions that share
// the *same* kernel public excess. This is a key part of building a transaction as two
// "halves" for NRD kernels.
// Note: In a real world scenario multiple participants would build the kernel signature
// using signature aggregation. No party would see the full private kernel excess and
// the halves would need to be constructed with carefully crafted individual offsets to
// adjust the excess as required.
// For the sake of convenience we are simply constructing the kernel directly and we have access
// to the full private excess.
#[test]
fn build_two_half_kernels() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
// build kernel with associated private excess
let mut kernel = TxKernel::with_features(KernelFeatures::Plain { fee: 2.into() });
// Construct the message to be signed.
let msg = kernel.msg_to_sign().unwrap();
// Generate a kernel with public excess and associated signature.
let excess = BlindingFactor::rand(&keychain.secp());
let skey = excess.secret_key(&keychain.secp()).unwrap();
kernel.excess = keychain.secp().commit(0, skey).unwrap();
let pubkey = &kernel.excess.to_pubkey(&keychain.secp()).unwrap();
kernel.excess_sig =
aggsig::sign_with_blinding(&keychain.secp(), &msg, &excess, Some(&pubkey)).unwrap();
kernel.verify().unwrap();
let tx1 = build::transaction_with_kernel(
&[input(10, key_id1), output(8, key_id2.clone())],
kernel.clone(),
excess.clone(),
&keychain,
&builder,
)
.unwrap();
let tx2 = build::transaction_with_kernel(
&[input(8, key_id2), output(6, key_id3)],
kernel.clone(),
excess.clone(),
&keychain,
&builder,
)
.unwrap();
assert_eq!(tx1.validate(Weighting::AsTransaction), Ok(()),);
assert_eq!(tx2.validate(Weighting::AsTransaction), Ok(()),);
// The transactions share an identical kernel.
assert_eq!(tx1.kernels()[0], tx2.kernels()[0]);
// The public kernel excess is shared between both "halves".
assert_eq!(tx1.kernels()[0].excess(), tx2.kernels()[0].excess());
// Each transaction is built from different inputs and outputs.
// The offset differs to compensate for the shared excess commitments.
assert!(tx1.offset != tx2.offset);
// For completeness, these are different transactions.
assert!(tx1.hash() != tx2.hash());
}
// Combine two transactions into one big transaction (with multiple kernels)
// and check it still validates.
#[test]
fn transaction_cut_through() {
test_setup();
let tx1 = tx1i2o();
let tx2 = tx2i1o();
assert!(tx1.validate(Weighting::AsTransaction).is_ok());
assert!(tx2.validate(Weighting::AsTransaction).is_ok());
// now build a "cut_through" tx from tx1 and tx2
let tx3 = aggregate(&[tx1, tx2]).unwrap();
assert!(tx3.validate(Weighting::AsTransaction).is_ok());
}
// Attempt to deaggregate a multi-kernel transaction in a different way
#[test]
fn multi_kernel_transaction_deaggregation() {
test_setup();
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
let tx4 = tx1i1o();
assert!(tx1.validate(Weighting::AsTransaction).is_ok());
assert!(tx2.validate(Weighting::AsTransaction).is_ok());
assert!(tx3.validate(Weighting::AsTransaction).is_ok());
assert!(tx4.validate(Weighting::AsTransaction).is_ok());
let tx1234 = aggregate(&[tx1.clone(), tx2.clone(), tx3.clone(), tx4.clone()]).unwrap();
let tx12 = aggregate(&[tx1, tx2]).unwrap();
let tx34 = aggregate(&[tx3, tx4]).unwrap();
assert!(tx1234.validate(Weighting::AsTransaction).is_ok());
assert!(tx12.validate(Weighting::AsTransaction).is_ok());
assert!(tx34.validate(Weighting::AsTransaction).is_ok());
let deaggregated_tx34 = deaggregate(tx1234.clone(), &[tx12.clone()]).unwrap();
assert!(deaggregated_tx34
.validate(Weighting::AsTransaction)
.is_ok());
assert_eq!(tx34, deaggregated_tx34);
let deaggregated_tx12 = deaggregate(tx1234, &[tx34]).unwrap();
assert!(deaggregated_tx12
.validate(Weighting::AsTransaction)
.is_ok());
assert_eq!(tx12, deaggregated_tx12);
}
#[test]
fn multi_kernel_transaction_deaggregation_2() {
test_setup();
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
assert!(tx1.validate(Weighting::AsTransaction).is_ok());
assert!(tx2.validate(Weighting::AsTransaction).is_ok());
assert!(tx3.validate(Weighting::AsTransaction).is_ok());
let tx123 = aggregate(&[tx1.clone(), tx2.clone(), tx3.clone()]).unwrap();
let tx12 = aggregate(&[tx1, tx2]).unwrap();
assert!(tx123.validate(Weighting::AsTransaction).is_ok());
assert!(tx12.validate(Weighting::AsTransaction).is_ok());
let deaggregated_tx3 = deaggregate(tx123, &[tx12]).unwrap();
assert!(deaggregated_tx3
.validate(Weighting::AsTransaction)
.is_ok());
assert_eq!(tx3, deaggregated_tx3);
}
#[test]
fn multi_kernel_transaction_deaggregation_3() {
test_setup();
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
assert!(tx1.validate(Weighting::AsTransaction).is_ok());
assert!(tx2.validate(Weighting::AsTransaction).is_ok());
assert!(tx3.validate(Weighting::AsTransaction).is_ok());
let tx123 = aggregate(&[tx1.clone(), tx2.clone(), tx3.clone()]).unwrap();
let tx13 = aggregate(&[tx1, tx3]).unwrap();
let tx2 = aggregate(&[tx2]).unwrap();
assert!(tx123.validate(Weighting::AsTransaction).is_ok());
assert!(tx2.validate(Weighting::AsTransaction).is_ok());
let deaggregated_tx13 = deaggregate(tx123, &[tx2]).unwrap();
assert!(deaggregated_tx13
.validate(Weighting::AsTransaction)
.is_ok());
assert_eq!(tx13, deaggregated_tx13);
}
#[test]
fn multi_kernel_transaction_deaggregation_4() {
test_setup();
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
let tx4 = tx1i1o();
let tx5 = tx1i1o();
assert!(tx1.validate(Weighting::AsTransaction).is_ok());
assert!(tx2.validate(Weighting::AsTransaction).is_ok());
assert!(tx3.validate(Weighting::AsTransaction).is_ok());
assert!(tx4.validate(Weighting::AsTransaction).is_ok());
assert!(tx5.validate(Weighting::AsTransaction).is_ok());
let tx12345 = aggregate(&[
tx1.clone(),
tx2.clone(),
tx3.clone(),
tx4.clone(),
tx5.clone(),
])
.unwrap();
assert!(tx12345.validate(Weighting::AsTransaction).is_ok());
let deaggregated_tx5 = deaggregate(tx12345, &[tx1, tx2, tx3, tx4]).unwrap();
assert!(deaggregated_tx5
.validate(Weighting::AsTransaction)
.is_ok());
assert_eq!(tx5, deaggregated_tx5);
}
#[test]
fn multi_kernel_transaction_deaggregation_5() {
test_setup();
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
let tx4 = tx1i1o();
let tx5 = tx1i1o();
assert!(tx1.validate(Weighting::AsTransaction).is_ok());
assert!(tx2.validate(Weighting::AsTransaction).is_ok());
assert!(tx3.validate(Weighting::AsTransaction).is_ok());
assert!(tx4.validate(Weighting::AsTransaction).is_ok());
assert!(tx5.validate(Weighting::AsTransaction).is_ok());
let tx12345 = aggregate(&[
tx1.clone(),
tx2.clone(),
tx3.clone(),
tx4.clone(),
tx5.clone(),
])
.unwrap();
let tx12 = aggregate(&[tx1, tx2]).unwrap();
let tx34 = aggregate(&[tx3, tx4]).unwrap();
assert!(tx12345.validate(Weighting::AsTransaction).is_ok());
let deaggregated_tx5 = deaggregate(tx12345, &[tx12, tx34]).unwrap();
assert!(deaggregated_tx5
.validate(Weighting::AsTransaction)
.is_ok());
assert_eq!(tx5, deaggregated_tx5);
}
// Attempt to deaggregate a multi-kernel transaction
#[test]
fn basic_transaction_deaggregation() {
test_setup();
let tx1 = tx1i2o();
let tx2 = tx2i1o();
assert!(tx1.validate(Weighting::AsTransaction).is_ok());
assert!(tx2.validate(Weighting::AsTransaction).is_ok());
// now build a "cut_through" tx from tx1 and tx2
let tx3 = aggregate(&[tx1.clone(), tx2.clone()]).unwrap();
assert!(tx3.validate(Weighting::AsTransaction).is_ok());
let deaggregated_tx1 = deaggregate(tx3.clone(), &[tx2.clone()]).unwrap();
assert!(deaggregated_tx1
.validate(Weighting::AsTransaction)
.is_ok());
assert_eq!(tx1, deaggregated_tx1);
let deaggregated_tx2 = deaggregate(tx3, &[tx1]).unwrap();
assert!(deaggregated_tx2
.validate(Weighting::AsTransaction)
.is_ok());
assert_eq!(tx2, deaggregated_tx2);
}
#[test]
fn hash_output() {
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let tx = build::transaction(
KernelFeatures::Plain { fee: 1.into() },
&[input(75, key_id1), output(42, key_id2), output(32, key_id3)],
&keychain,
&builder,
)
.unwrap();
let h = tx.outputs()[0].identifier.hash();
assert!(h != ZERO_HASH);
let h2 = tx.outputs()[1].identifier.hash();
assert!(h != h2);
}
#[ignore]
#[test]
fn blind_tx() {
let btx = tx2i1o();
assert!(btx.validate(Weighting::AsTransaction).is_ok());
// Ignored for bullet proofs, because calling range_proof_info
// with a bullet proof causes painful errors
// checks that the range proof on our blind output is sufficiently hiding
let Output { proof, .. } = btx.outputs()[0];
let secp = static_secp_instance();
let secp = secp.lock();
let info = secp.range_proof_info(proof);
assert!(info.min == 0);
assert!(info.max == u64::max_value());
}
#[test]
fn tx_hash_diff() {
let btx1 = tx2i1o();
let btx2 = tx1i1o();
if btx1.hash() == btx2.hash() {
panic!("diff txs have same hash")
}
}
/// Simulate the standard exchange between 2 parties when creating a basic
/// 2 inputs, 2 outputs transaction.
#[test]
fn tx_build_exchange() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let key_id4 = ExtKeychain::derive_key_id(1, 4, 0, 0, 0);
let (tx_alice, blind_sum) = {
// Alice gets 2 of her pre-existing outputs to send 5 coins to Bob, they
// become inputs in the new transaction
let (in1, in2) = (input(4, key_id1), input(3, key_id2));
// Alice builds her transaction, with change, which also produces the sum
// of blinding factors before they're obscured.
let tx = Transaction::empty().with_kernel(TxKernel::with_features(KernelFeatures::Plain {
fee: 2.into(),
}));
let (tx, sum) =
build::partial_transaction(tx, &[in1, in2, output(1, key_id3)], &keychain, &builder)
.unwrap();
(tx, sum)
};
// From now on, Bob only has the obscured transaction and the sum of
// blinding factors. He adds his output, finalizes the transaction so it's
// ready for broadcast.
let tx_final = build::transaction(
KernelFeatures::Plain { fee: 2.into() },
&[
initial_tx(tx_alice),
with_excess(blind_sum),
output(4, key_id4),
],
&keychain,
&builder,
)
.unwrap();
tx_final.validate(Weighting::AsTransaction).unwrap();
}
#[test]
fn reward_empty_block() {
test_setup();
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let previous_header = BlockHeader::default();
let b = new_block(&[], &keychain, &builder, &previous_header, &key_id);
b.validate(&BlindingFactor::zero()).unwrap();
}
#[test]
fn reward_with_tx_block() {
test_setup();
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let tx1 = tx2i1o();
let previous_header = BlockHeader::default();
tx1.validate(Weighting::AsTransaction)
.unwrap();
let block = new_block(&[tx1], &keychain, &builder, &previous_header, &key_id);
block.validate(&BlindingFactor::zero()).unwrap();
}
#[test]
fn simple_block() {
test_setup();
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let tx1 = tx2i1o();
let tx2 = tx1i1o();
let previous_header = BlockHeader::default();
let b = new_block(&[tx1, tx2], &keychain, &builder, &previous_header, &key_id);
b.validate(&BlindingFactor::zero()).unwrap();
}
#[test]
fn test_block_with_timelocked_tx() {
test_setup();
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
// first check we can add a timelocked tx where lock height matches current
// block height and that the resulting block is valid
let tx1 = build::transaction(
KernelFeatures::HeightLocked {
fee: 2.into(),
lock_height: 1,
},
&[input(5, key_id1.clone()), output(3, key_id2.clone())],
&keychain,
&builder,
)
.unwrap();
let previous_header = BlockHeader::default();
let b = new_block(
&[tx1],
&keychain,
&builder,
&previous_header,
&key_id3.clone(),
);
b.validate(&BlindingFactor::zero()).unwrap();
// now try adding a timelocked tx where lock height is greater than current
// block height
let tx1 = build::transaction(
KernelFeatures::HeightLocked {
fee: 2.into(),
lock_height: 2,
},
&[input(5, key_id1), output(3, key_id2)],
&keychain,
&builder,
)
.unwrap();
let previous_header = BlockHeader::default();
let b = new_block(&[tx1], &keychain, &builder, &previous_header, &key_id3);
match b.validate(&BlindingFactor::zero()) {
Err(KernelLockHeight(height)) => {
assert_eq!(height, 2);
}
_ => panic!("expecting KernelLockHeight error here"),
}
}
#[test]
pub fn test_verify_1i1o_sig() {
test_setup();
let tx = tx1i1o();
tx.validate(Weighting::AsTransaction).unwrap();
}
#[test]
pub fn test_verify_2i1o_sig() {
test_setup();
let tx = tx2i1o();
tx.validate(Weighting::AsTransaction).unwrap();
}