grin/core/tests/block.rs
2021-04-01 15:04:53 +01:00

988 lines
30 KiB
Rust

// Copyright 2021 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod common;
use crate::common::{new_block, tx1i2o, tx2i1o, txspend1i1o};
use crate::core::consensus::{self, OUTPUT_WEIGHT, TESTING_HARD_FORK_INTERVAL};
use crate::core::core::block::{Block, BlockHeader, Error, HeaderVersion, UntrustedBlockHeader};
use crate::core::core::hash::Hashed;
use crate::core::core::id::ShortIdentifiable;
use crate::core::core::transaction::{
self, FeeFields, KernelFeatures, NRDRelativeHeight, Output, OutputFeatures, OutputIdentifier,
Transaction,
};
use crate::core::core::{Committed, CompactBlock};
use crate::core::libtx::build::{self, input, output};
use crate::core::libtx::ProofBuilder;
use crate::core::{global, pow, ser};
use chrono::Duration;
use grin_core as core;
use keychain::{BlindingFactor, ExtKeychain, Keychain};
use util::{secp, ToHex};
// Setup test with AutomatedTesting chain_type;
fn test_setup() {
util::init_test_logger();
global::set_local_chain_type(global::ChainTypes::AutomatedTesting);
}
#[test]
fn too_large_block() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let max_out = global::max_block_weight() / OUTPUT_WEIGHT;
let mut pks = vec![];
for n in 0..(max_out + 1) {
pks.push(ExtKeychain::derive_key_id(1, n as u32, 0, 0, 0));
}
let mut parts = vec![];
for _ in 0..max_out {
parts.push(output(5, pks.pop().unwrap()));
}
parts.append(&mut vec![input(500000, pks.pop().unwrap())]);
let tx = build::transaction(
KernelFeatures::Plain { fee: 2.into() },
&parts,
&keychain,
&builder,
)
.unwrap();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[tx], &keychain, &builder, &prev, &key_id);
assert!(b.validate(&BlindingFactor::zero()).is_err());
}
#[test]
// block with no inputs/outputs/kernels
// no fees, no reward, no coinbase
fn very_empty_block() {
test_setup();
let b = Block::with_header(BlockHeader::default());
assert_eq!(
b.verify_coinbase(),
Err(Error::Secp(secp::Error::IncorrectCommitSum))
);
}
#[test]
fn block_with_nrd_kernel_pre_post_hf3() {
// automated testing - HF{1|2|3} at block heights {3, 6, 9}
// Enable the global NRD feature flag. NRD kernels valid at HF3 at height 9.
global::set_local_chain_type(global::ChainTypes::AutomatedTesting);
global::set_local_nrd_enabled(true);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let tx = build::transaction(
KernelFeatures::NoRecentDuplicate {
fee: 2.into(),
relative_height: NRDRelativeHeight::new(1440).unwrap(),
},
&[input(7, key_id1), output(5, key_id2)],
&keychain,
&builder,
)
.unwrap();
let txs = &[tx];
let prev_height = 3 * TESTING_HARD_FORK_INTERVAL - 2;
let prev = BlockHeader {
height: prev_height,
version: consensus::header_version(prev_height),
..BlockHeader::default()
};
let b = new_block(
txs,
&keychain,
&builder,
&prev,
&ExtKeychain::derive_key_id(1, 1, 0, 0, 0),
);
// Block is invalid at header version 3 if it contains an NRD kernel.
assert_eq!(b.header.version, HeaderVersion(3));
assert_eq!(
b.validate(&BlindingFactor::zero()),
Err(Error::NRDKernelPreHF3)
);
let prev_height = 3 * TESTING_HARD_FORK_INTERVAL - 1;
let prev = BlockHeader {
height: prev_height,
version: consensus::header_version(prev_height),
..BlockHeader::default()
};
let b = new_block(
txs,
&keychain,
&builder,
&prev,
&ExtKeychain::derive_key_id(1, 1, 0, 0, 0),
);
// Block is valid at header version 4 (at HF height) if it contains an NRD kernel.
assert_eq!(b.header.height, 3 * TESTING_HARD_FORK_INTERVAL);
assert_eq!(b.header.version, HeaderVersion(4));
assert!(b.validate(&BlindingFactor::zero()).is_ok());
let prev_height = 3 * TESTING_HARD_FORK_INTERVAL;
let prev = BlockHeader {
height: prev_height,
version: consensus::header_version(prev_height),
..BlockHeader::default()
};
let b = new_block(
txs,
&keychain,
&builder,
&prev,
&ExtKeychain::derive_key_id(1, 1, 0, 0, 0),
);
// Block is valid at header version 4 if it contains an NRD kernel.
assert_eq!(b.header.version, HeaderVersion(4));
assert!(b.validate(&BlindingFactor::zero()).is_ok());
}
#[test]
fn block_with_nrd_kernel_nrd_not_enabled() {
// automated testing - HF{1|2|3} at block heights {3, 6, 9}
global::set_local_chain_type(global::ChainTypes::AutomatedTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let tx = build::transaction(
KernelFeatures::NoRecentDuplicate {
fee: 2.into(),
relative_height: NRDRelativeHeight::new(1440).unwrap(),
},
&[input(7, key_id1), output(5, key_id2)],
&keychain,
&builder,
)
.unwrap();
let txs = &[tx];
let prev_height = 3 * TESTING_HARD_FORK_INTERVAL - 2;
let prev = BlockHeader {
height: prev_height,
version: consensus::header_version(prev_height),
..BlockHeader::default()
};
let b = new_block(
txs,
&keychain,
&builder,
&prev,
&ExtKeychain::derive_key_id(1, 1, 0, 0, 0),
);
// Block is invalid as NRD not enabled.
assert_eq!(b.header.version, HeaderVersion(3));
assert_eq!(
b.validate(&BlindingFactor::zero()),
Err(Error::NRDKernelNotEnabled)
);
let prev_height = 3 * TESTING_HARD_FORK_INTERVAL - 1;
let prev = BlockHeader {
height: prev_height,
version: consensus::header_version(prev_height),
..BlockHeader::default()
};
let b = new_block(
txs,
&keychain,
&builder,
&prev,
&ExtKeychain::derive_key_id(1, 1, 0, 0, 0),
);
// Block is invalid as NRD not enabled.
assert_eq!(b.header.height, 3 * TESTING_HARD_FORK_INTERVAL);
assert_eq!(b.header.version, HeaderVersion(4));
assert_eq!(
b.validate(&BlindingFactor::zero()),
Err(Error::NRDKernelNotEnabled)
);
let prev_height = 3 * TESTING_HARD_FORK_INTERVAL;
let prev = BlockHeader {
height: prev_height,
version: consensus::header_version(prev_height),
..BlockHeader::default()
};
let b = new_block(
txs,
&keychain,
&builder,
&prev,
&ExtKeychain::derive_key_id(1, 1, 0, 0, 0),
);
// Block is invalid as NRD not enabled.
assert_eq!(b.header.version, HeaderVersion(4));
assert_eq!(
b.validate(&BlindingFactor::zero()),
Err(Error::NRDKernelNotEnabled)
);
}
#[test]
// builds a block with a tx spending another and check that cut_through occurred
fn block_with_cut_through() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let btx1 = tx2i1o();
let btx2 = build::transaction(
KernelFeatures::Plain { fee: 2.into() },
&[input(7, key_id1), output(5, key_id2.clone())],
&keychain,
&builder,
)
.unwrap();
// spending tx2 - reuse key_id2
let btx3 = txspend1i1o(5, &keychain, &builder, key_id2, key_id3);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[btx1, btx2, btx3], &keychain, &builder, &prev, &key_id);
// block should have been automatically compacted (including reward
// output) and should still be valid
b.validate(&BlindingFactor::zero()).unwrap();
assert_eq!(b.inputs().len(), 3);
assert_eq!(b.outputs().len(), 3);
}
#[test]
fn empty_block_with_coinbase_is_valid() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[], &keychain, &builder, &prev, &key_id);
assert_eq!(b.inputs().len(), 0);
assert_eq!(b.outputs().len(), 1);
assert_eq!(b.kernels().len(), 1);
let coinbase_outputs = b
.outputs()
.iter()
.filter(|out| out.is_coinbase())
.cloned()
.collect::<Vec<_>>();
assert_eq!(coinbase_outputs.len(), 1);
let coinbase_kernels = b
.kernels()
.iter()
.filter(|out| out.is_coinbase())
.cloned()
.collect::<Vec<_>>();
assert_eq!(coinbase_kernels.len(), 1);
// the block should be valid here (single coinbase output with corresponding
// txn kernel)
assert!(b.validate(&BlindingFactor::zero()).is_ok());
}
#[test]
// test that flipping the COINBASE flag on the output features
// invalidates the block and specifically it causes verify_coinbase to fail
// additionally verifying the merkle_inputs_outputs also fails
fn remove_coinbase_output_flag() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[], &keychain, &builder, &prev, &key_id);
let output = b.outputs()[0];
let output = Output::new(OutputFeatures::Plain, output.commitment(), output.proof());
let b = Block {
body: b.body.replace_outputs(&[output]),
..b
};
assert_eq!(b.verify_coinbase(), Err(Error::CoinbaseSumMismatch));
assert!(b
.verify_kernel_sums(b.header.overage(), b.header.total_kernel_offset())
.is_ok());
assert_eq!(
b.validate(&BlindingFactor::zero()),
Err(Error::CoinbaseSumMismatch)
);
}
#[test]
// test that flipping the COINBASE flag on the kernel features
// invalidates the block and specifically it causes verify_coinbase to fail
fn remove_coinbase_kernel_flag() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let mut b = new_block(&[], &keychain, &builder, &prev, &key_id);
let mut kernel = b.kernels()[0].clone();
kernel.features = KernelFeatures::Plain {
fee: FeeFields::zero(),
};
b.body = b.body.replace_kernel(kernel);
// Flipping the coinbase flag results in kernels not summing correctly.
assert_eq!(
b.verify_coinbase(),
Err(Error::Secp(secp::Error::IncorrectCommitSum))
);
// Also results in the block no longer validating correctly
// because the message being signed on each tx kernel includes the kernel features.
assert_eq!(
b.validate(&BlindingFactor::zero()),
Err(Error::Transaction(transaction::Error::IncorrectSignature))
);
}
#[test]
fn serialize_deserialize_header_version() {
let mut vec1 = Vec::new();
ser::serialize_default(&mut vec1, &1_u16).expect("serialization failed");
let mut vec2 = Vec::new();
ser::serialize_default(&mut vec2, &HeaderVersion(1)).expect("serialization failed");
// Check that a header_version serializes to a
// single u16 value with no extraneous bytes wrapping it.
assert_eq!(vec1, vec2);
// Check we can successfully deserialize a header_version.
let version: HeaderVersion = ser::deserialize_default(&mut &vec2[..]).unwrap();
assert_eq!(version.0, 1)
}
#[test]
fn serialize_deserialize_block_header() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[], &keychain, &builder, &prev, &key_id);
let header1 = b.header;
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &header1).expect("serialization failed");
let header2: BlockHeader = ser::deserialize_default(&mut &vec[..]).unwrap();
assert_eq!(header1.hash(), header2.hash());
assert_eq!(header1, header2);
}
fn set_pow(header: &mut BlockHeader) {
// Set valid pow on the block as we will test deserialization of this "untrusted" from the network.
let edge_bits = global::min_edge_bits();
header.pow.proof.edge_bits = edge_bits;
pow::pow_size(
header,
pow::Difficulty::min_dma(),
global::proofsize(),
edge_bits,
)
.unwrap();
}
#[test]
fn deserialize_untrusted_header_weight() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let mut b = new_block(&[], &keychain, &builder, &prev, &key_id);
// Set excessively large output mmr size on the header.
b.header.output_mmr_size = 10_000;
b.header.kernel_mmr_size = 0;
set_pow(&mut b.header);
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b.header).expect("serialization failed");
let res: Result<UntrustedBlockHeader, _> = ser::deserialize_default(&mut &vec[..]);
assert_eq!(res.err(), Some(ser::Error::CorruptedData));
// Set excessively large kernel mmr size on the header.
b.header.output_mmr_size = 0;
b.header.kernel_mmr_size = 10_000;
set_pow(&mut b.header);
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b.header).expect("serialization failed");
let res: Result<UntrustedBlockHeader, _> = ser::deserialize_default(&mut &vec[..]);
assert_eq!(res.err(), Some(ser::Error::CorruptedData));
// Set reasonable mmr sizes on the header to confirm the header can now be read "untrusted".
b.header.output_mmr_size = 1;
b.header.kernel_mmr_size = 1;
set_pow(&mut b.header);
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b.header).expect("serialization failed");
let res: Result<UntrustedBlockHeader, _> = ser::deserialize_default(&mut &vec[..]);
assert!(res.is_ok());
}
#[test]
fn serialize_deserialize_block() {
test_setup();
let tx1 = tx1i2o();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[tx1], &keychain, &builder, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
let b2: Block = ser::deserialize_default(&mut &vec[..]).unwrap();
assert_eq!(b.hash(), b2.hash());
assert_eq!(b.header, b2.header);
assert_eq!(b.inputs(), b2.inputs());
assert_eq!(b.outputs(), b2.outputs());
assert_eq!(b.kernels(), b2.kernels());
}
#[test]
fn empty_block_serialized_size() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[], &keychain, &builder, &prev, &key_id);
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
assert_eq!(vec.len(), 1_096);
}
#[test]
fn block_single_tx_serialized_size() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[tx1], &keychain, &builder, &prev, &key_id);
// Default protocol version (3)
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
assert_eq!(vec.len(), 2_669);
// Protocol version 3
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(3), &b).expect("serialization failed");
assert_eq!(vec.len(), 2_669);
// Protocol version 2.
// Note: block must be in "v2" compatibility with "features and commit" inputs for this.
// Normally we would convert the block by looking inputs up in utxo but we fake it here for testing.
let inputs: Vec<_> = b.inputs().into();
let inputs: Vec<_> = inputs
.iter()
.map(|input| OutputIdentifier {
features: OutputFeatures::Plain,
commit: input.commitment(),
})
.collect();
let b = Block {
header: b.header,
body: b.body.replace_inputs(inputs.as_slice().into()),
};
// Protocol version 2
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(2), &b).expect("serialization failed");
assert_eq!(vec.len(), 2_670);
// Protocol version 1 (fixed size kernels)
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(1), &b).expect("serialization failed");
assert_eq!(vec.len(), 2_694);
// Check we can also serialize a v2 compatibility block in v3 protocol version
// without needing to explicitly convert the block.
let mut vec = Vec::new();
ser::serialize(&mut vec, ser::ProtocolVersion(3), &b).expect("serialization failed");
assert_eq!(vec.len(), 2_669);
// Default protocol version (3) for completeness
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
assert_eq!(vec.len(), 2_669);
}
#[test]
fn empty_compact_block_serialized_size() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[], &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &cb).expect("serialization failed");
assert_eq!(vec.len(), 1_104);
}
#[test]
fn compact_block_single_tx_serialized_size() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[tx1], &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &cb).expect("serialization failed");
assert_eq!(vec.len(), 1_110);
}
#[test]
fn block_10_tx_serialized_size() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let mut txs = vec![];
for _ in 0..10 {
let tx = tx1i2o();
txs.push(tx);
}
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&txs, &keychain, &builder, &prev, &key_id);
{
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &b).expect("serialization failed");
assert_eq!(vec.len(), 16_826);
}
}
#[test]
fn compact_block_10_tx_serialized_size() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let mut txs = vec![];
for _ in 0..10 {
let tx = tx1i2o();
txs.push(tx);
}
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&txs, &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &cb).expect("serialization failed");
assert_eq!(vec.len(), 1_164);
}
#[test]
fn compact_block_hash_with_nonce() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[tx.clone()], &keychain, &builder, &prev, &key_id);
let cb1: CompactBlock = b.clone().into();
let cb2: CompactBlock = b.clone().into();
// random nonce will not affect the hash of the compact block itself
// hash is based on header POW only
assert!(cb1.nonce != cb2.nonce);
assert_eq!(b.hash(), cb1.hash());
assert_eq!(cb1.hash(), cb2.hash());
assert!(cb1.kern_ids()[0] != cb2.kern_ids()[0]);
// check we can identify the specified kernel from the short_id
// correctly in both of the compact_blocks
assert_eq!(
cb1.kern_ids()[0],
tx.kernels()[0].short_id(&cb1.hash(), cb1.nonce)
);
assert_eq!(
cb2.kern_ids()[0],
tx.kernels()[0].short_id(&cb2.hash(), cb2.nonce)
);
}
#[test]
fn convert_block_to_compact_block() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[tx1], &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.clone().into();
assert_eq!(cb.out_full().len(), 1);
assert_eq!(cb.kern_full().len(), 1);
assert_eq!(cb.kern_ids().len(), 1);
assert_eq!(
cb.kern_ids()[0],
b.kernels()
.iter()
.find(|x| !x.is_coinbase())
.unwrap()
.short_id(&cb.hash(), cb.nonce)
);
}
#[test]
fn hydrate_empty_compact_block() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[], &keychain, &builder, &prev, &key_id);
let cb: CompactBlock = b.clone().into();
let hb = Block::hydrate_from(cb, &[]).unwrap();
assert_eq!(hb.header, b.header);
assert_eq!(hb.outputs(), b.outputs());
assert_eq!(hb.kernels(), b.kernels());
}
#[test]
fn serialize_deserialize_compact_block() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let tx1 = tx1i2o();
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[tx1], &keychain, &builder, &prev, &key_id);
let mut cb1: CompactBlock = b.into();
let mut vec = Vec::new();
ser::serialize_default(&mut vec, &cb1).expect("serialization failed");
// After header serialization, timestamp will lose 'nanos' info, that's the designed behavior.
// To suppress 'nanos' difference caused assertion fail, we force b.header also lose 'nanos'.
let origin_ts = cb1.header.timestamp;
cb1.header.timestamp =
origin_ts - Duration::nanoseconds(origin_ts.timestamp_subsec_nanos() as i64);
let cb2: CompactBlock = ser::deserialize_default(&mut &vec[..]).unwrap();
assert_eq!(cb1.header, cb2.header);
assert_eq!(cb1.kern_ids(), cb2.kern_ids());
}
// Duplicate a range proof from a valid output into another of the same amount
#[test]
fn same_amount_outputs_copy_range_proof() {
test_setup();
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = keychain::ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = keychain::ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = keychain::ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let tx = build::transaction(
KernelFeatures::Plain { fee: 1.into() },
&[input(7, key_id1), output(3, key_id2), output(3, key_id3)],
&keychain,
&builder,
)
.unwrap();
// now we reconstruct the transaction, swapping the rangeproofs so they
// have the wrong privkey
let mut outs = tx.outputs().to_vec();
outs[0].proof = outs[1].proof;
let key_id = keychain::ExtKeychain::derive_key_id(1, 4, 0, 0, 0);
let prev = BlockHeader::default();
let b = new_block(
&[Transaction::new(tx.inputs(), &outs, tx.kernels())],
&keychain,
&builder,
&prev,
&key_id,
);
// block should have been automatically compacted (including reward
// output) and should still be valid
match b.validate(&BlindingFactor::zero()) {
Err(Error::Transaction(transaction::Error::Secp(secp::Error::InvalidRangeProof))) => {}
_ => panic!("Bad range proof should be invalid"),
}
}
// Swap a range proof with the right private key but wrong amount
#[test]
fn wrong_amount_range_proof() {
test_setup();
let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = keychain::ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = keychain::ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = keychain::ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let tx1 = build::transaction(
KernelFeatures::Plain { fee: 1.into() },
&[
input(7, key_id1.clone()),
output(3, key_id2.clone()),
output(3, key_id3.clone()),
],
&keychain,
&builder,
)
.unwrap();
let tx2 = build::transaction(
KernelFeatures::Plain { fee: 1.into() },
&[input(7, key_id1), output(2, key_id2), output(4, key_id3)],
&keychain,
&builder,
)
.unwrap();
// we take the range proofs from tx2 into tx1 and rebuild the transaction
let mut outs = tx1.outputs().to_vec();
outs[0].proof = tx2.outputs()[0].proof;
outs[1].proof = tx2.outputs()[1].proof;
let key_id = keychain::ExtKeychain::derive_key_id(1, 4, 0, 0, 0);
let prev = BlockHeader::default();
let b = new_block(
&[Transaction::new(tx1.inputs(), &outs, tx1.kernels())],
&keychain,
&builder,
&prev,
&key_id,
);
// block should have been automatically compacted (including reward
// output) and should still be valid
match b.validate(&BlindingFactor::zero()) {
Err(Error::Transaction(transaction::Error::Secp(secp::Error::InvalidRangeProof))) => {}
_ => panic!("Bad range proof should be invalid"),
}
}
#[test]
fn validate_header_proof() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let b = new_block(&[], &keychain, &builder, &prev, &key_id);
let mut header_buf = vec![];
{
let mut writer = ser::BinWriter::default(&mut header_buf);
b.header.write_pre_pow(&mut writer).unwrap();
b.header.pow.write_pre_pow(&mut writer).unwrap();
}
let pre_pow = header_buf.to_hex();
let reconstructed = BlockHeader::from_pre_pow_and_proof(
pre_pow,
b.header.pow.nonce,
b.header.pow.proof.clone(),
)
.unwrap();
assert_eq!(reconstructed, b.header);
// assert invalid pre_pow returns error
assert!(BlockHeader::from_pre_pow_and_proof(
"0xaf1678".to_string(),
b.header.pow.nonce,
b.header.pow.proof,
)
.is_err());
}
// Test coverage for verifying cut-through during block validation.
// It is not valid for a block to spend an output and produce a new output with the same commitment.
// This test covers the case where a plain output is spent, producing a plain output with the same commitment.
#[test]
fn test_verify_cut_through_plain() -> Result<(), Error> {
global::set_local_chain_type(global::ChainTypes::UserTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let builder = ProofBuilder::new(&keychain);
let tx = build::transaction(
KernelFeatures::Plain {
fee: FeeFields::zero(),
},
&[
build::input(10, key_id1.clone()),
build::input(10, key_id2.clone()),
build::output(10, key_id1.clone()),
build::output(6, key_id2.clone()),
build::output(4, key_id3.clone()),
],
&keychain,
&builder,
)
.expect("valid tx");
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(0, 0, 0, 0, 0);
let mut block = new_block(&[tx], &keychain, &builder, &prev, &key_id);
// The block should fail validation due to cut-through.
assert_eq!(
block.validate(&BlindingFactor::zero()),
Err(Error::Transaction(transaction::Error::CutThrough))
);
// The block should fail lightweight "read" validation due to cut-through.
assert_eq!(
block.validate_read(),
Err(Error::Transaction(transaction::Error::CutThrough))
);
// Apply cut-through to eliminate the offending input and output.
let mut inputs: Vec<_> = block.inputs().into();
let mut outputs = block.outputs().to_vec();
let (inputs, outputs, _, _) = transaction::cut_through(&mut inputs[..], &mut outputs[..])?;
block.body = block
.body
.replace_inputs(inputs.into())
.replace_outputs(outputs);
// Block validates successfully after applying cut-through.
block.validate(&BlindingFactor::zero())?;
// Block validates via lightweight "read" validation.
block.validate_read()?;
Ok(())
}
// Test coverage for verifying cut-through during block validation.
// It is not valid for a block to spend an output and produce a new output with the same commitment.
// This test covers the case where a coinbase output is spent, producing a plain output with the same commitment.
#[test]
fn test_verify_cut_through_coinbase() -> Result<(), Error> {
global::set_local_chain_type(global::ChainTypes::UserTesting);
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let builder = ProofBuilder::new(&keychain);
let tx = build::transaction(
KernelFeatures::Plain {
fee: FeeFields::zero(),
},
&[
build::coinbase_input(consensus::REWARD, key_id1.clone()),
build::coinbase_input(consensus::REWARD, key_id2.clone()),
build::output(60_000_000_000, key_id1.clone()),
build::output(50_000_000_000, key_id2.clone()),
build::output(10_000_000_000, key_id3.clone()),
],
&keychain,
&builder,
)
.expect("valid tx");
let prev = BlockHeader::default();
let key_id = ExtKeychain::derive_key_id(0, 0, 0, 0, 0);
let mut block = new_block(&[tx], &keychain, &builder, &prev, &key_id);
// The block should fail validation due to cut-through.
assert_eq!(
block.validate(&BlindingFactor::zero()),
Err(Error::Transaction(transaction::Error::CutThrough))
);
// The block should fail lightweight "read" validation due to cut-through.
assert_eq!(
block.validate_read(),
Err(Error::Transaction(transaction::Error::CutThrough))
);
// Apply cut-through to eliminate the offending input and output.
let mut inputs: Vec<_> = block.inputs().into();
let mut outputs = block.outputs().to_vec();
let (inputs, outputs, _, _) = transaction::cut_through(&mut inputs[..], &mut outputs[..])?;
block.body = block
.body
.replace_inputs(inputs.into())
.replace_outputs(outputs);
// Block validates successfully after applying cut-through.
block.validate(&BlindingFactor::zero())?;
// Block validates via lightweight "read" validation.
block.validate_read()?;
Ok(())
}