// Copyright 2018 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Provides the JSON/HTTP API for wallets to receive payments. Because //! receiving money in MimbleWimble requires an interactive exchange, a //! wallet server that's running at all time is required in many cases. use bodyparser; use iron::prelude::*; use iron::Handler; use iron::status; use serde_json; use uuid::Uuid; use api; use core::consensus::reward; use core::core::{amount_to_hr_string, build, Block, Committed, Output, Transaction, TxKernel}; use core::{global, ser}; use keychain::{BlindingFactor, Identifier, Keychain}; use types::*; use util::{secp, to_hex, LOGGER}; use urlencoded::UrlEncodedQuery; use failure::ResultExt; /// Dummy wrapper for the hex-encoded serialized transaction. #[derive(Serialize, Deserialize)] pub struct TxWrapper { pub tx_hex: String, } /// Receive Part 1 of interactive transactions from sender, Sender Initiation /// Return result of part 2, Recipient Initation, to sender /// -Receiver receives inputs, outputs xS * G and kS * G /// -Receiver picks random blinding factors for all outputs being received, computes total blinding /// excess xR /// -Receiver picks random nonce kR /// -Receiver computes Schnorr challenge e = H(M | kR * G + kS * G) /// -Receiver computes their part of signature, sR = kR + e * xR /// -Receiver responds with sR, blinding excess xR * G, public nonce kR * G fn handle_sender_initiation( config: &WalletConfig, keychain: &Keychain, partial_tx: &PartialTx, ) -> Result { let (amount, _sender_pub_blinding, sender_pub_nonce, kernel_offset, _sig, tx) = read_partial_tx(keychain, partial_tx)?; let root_key_id = keychain.root_key_id(); // double check the fee amount included in the partial tx // we don't necessarily want to just trust the sender // we could just overwrite the fee here (but we won't) due to the ecdsa sig let fee = tx_fee(tx.inputs.len(), tx.outputs.len() + 1, None); if fee != tx.fee() { return Err(ErrorKind::FeeDispute { sender_fee: tx.fee(), recipient_fee: fee, })?; } if fee > amount { info!( LOGGER, "Rejected the transfer because transaction fee ({}) exceeds received amount ({}).", amount_to_hr_string(fee), amount_to_hr_string(amount) ); return Err(ErrorKind::FeeExceedsAmount { sender_amount: amount, recipient_fee: fee, })?; } let out_amount = amount - fee; // First step is just to get the excess sum of the outputs we're participating // in Output and key needs to be stored until transaction finalisation time, // somehow let key_id = WalletData::with_wallet(&config.data_file_dir, |wallet_data| { let (key_id, derivation) = next_available_key(&wallet_data, keychain); wallet_data.add_output(OutputData { root_key_id: root_key_id.clone(), key_id: key_id.clone(), n_child: derivation, value: out_amount, status: OutputStatus::Unconfirmed, height: 0, lock_height: 0, is_coinbase: false, block: None, merkle_proof: None, }); key_id })?; // Still handy for getting the blinding sum let (_, blind_sum) = build::partial_transaction(vec![build::output(out_amount, key_id.clone())], keychain) .context(ErrorKind::Keychain)?; warn!(LOGGER, "Creating new aggsig context"); // Create a new aggsig context // this will create a new blinding sum and nonce, and store them let blind = blind_sum .secret_key(&keychain.secp()) .context(ErrorKind::Keychain)?; keychain .aggsig_create_context(&partial_tx.id, blind) .context(ErrorKind::Keychain)?; keychain.aggsig_add_output(&partial_tx.id, &key_id); let sig_part = keychain .aggsig_calculate_partial_sig(&partial_tx.id, &sender_pub_nonce, fee, tx.lock_height()) .unwrap(); // Build the response, which should contain sR, blinding excess xR * G, public // nonce kR * G let mut partial_tx = build_partial_tx( &partial_tx.id, keychain, amount, kernel_offset, Some(sig_part), tx, ); partial_tx.phase = PartialTxPhase::ReceiverInitiation; Ok(partial_tx) } /// Receive Part 3 of interactive transactions from sender, Sender Confirmation /// Return Ok/Error /// -Receiver receives sS /// -Receiver verifies sender's sig, by verifying that kS * G + e *xS * G = sS * G /// -Receiver calculates final sig as s=(sS+sR, kS * G+kR * G) /// -Receiver puts into TX kernel: /// /// Signature S /// pubkey xR * G+xS * G /// fee (= M) /// -Receiver sends completed TX to mempool. responds OK to sender fn handle_sender_confirmation( config: &WalletConfig, keychain: &Keychain, partial_tx: &PartialTx, fluff: bool, ) -> Result { let (amount, sender_pub_blinding, sender_pub_nonce, kernel_offset, sender_sig_part, tx) = read_partial_tx(keychain, partial_tx)?; let sender_sig_part = sender_sig_part.unwrap(); let res = keychain.aggsig_verify_partial_sig( &partial_tx.id, &sender_sig_part, &sender_pub_nonce, &sender_pub_blinding, tx.fee(), tx.lock_height(), ); if !res { error!(LOGGER, "Partial Sig from sender invalid."); return Err(ErrorKind::Signature("Partial Sig from sender invalid."))?; } // Just calculate our sig part again instead of storing let our_sig_part = keychain .aggsig_calculate_partial_sig( &partial_tx.id, &sender_pub_nonce, tx.fee(), tx.lock_height(), ) .unwrap(); // And the final signature let final_sig = keychain .aggsig_calculate_final_sig( &partial_tx.id, &sender_sig_part, &our_sig_part, &sender_pub_nonce, ) .unwrap(); // Calculate the final public key (for our own sanity check) let final_pubkey = keychain .aggsig_calculate_final_pubkey(&partial_tx.id, &sender_pub_blinding) .unwrap(); // Check our final sig verifies let res = keychain.aggsig_verify_final_sig_build_msg( &final_sig, &final_pubkey, tx.fee(), tx.lock_height(), ); if !res { error!(LOGGER, "Final aggregated signature invalid."); return Err(ErrorKind::Signature("Final aggregated signature invalid."))?; } let final_tx = build_final_transaction( &partial_tx.id, config, keychain, amount, kernel_offset, &final_sig, tx.clone(), )?; let tx_hex = to_hex(ser::ser_vec(&final_tx).unwrap()); let url; if fluff { url = format!( "{}/v1/pool/push?fluff", config.check_node_api_http_addr.as_str() ); } else { url = format!("{}/v1/pool/push", config.check_node_api_http_addr.as_str()); } api::client::post(url.as_str(), &TxWrapper { tx_hex: tx_hex }).context(ErrorKind::Node)?; // Return what we've actually posted // TODO - why build_partial_tx here? Just a naming issue? let mut partial_tx = build_partial_tx( &partial_tx.id, keychain, amount, kernel_offset, Some(final_sig), tx, ); partial_tx.phase = PartialTxPhase::ReceiverConfirmation; Ok(partial_tx) } /// Component used to receive coins, implements all the receiving end of the /// wallet REST API as well as some of the command-line operations. #[derive(Clone)] pub struct WalletReceiver { pub keychain: Keychain, pub config: WalletConfig, } impl Handler for WalletReceiver { fn handle(&self, req: &mut Request) -> IronResult { let struct_body = req.get::>(); let mut fluff = false; if let Ok(params) = req.get_ref::() { if let Some(_) = params.get("fluff") { fluff = true; } } if let Ok(Some(partial_tx)) = struct_body { match partial_tx.phase { PartialTxPhase::SenderInitiation => { let resp_tx = handle_sender_initiation( &self.config, &self.keychain, &partial_tx, ).map_err(|e| { error!(LOGGER, "Phase 1 Sender Initiation -> Problematic partial tx, looks like this: {:?}", partial_tx); api::Error::Internal(format!( "Error processing partial transaction: {:?}", e )) }) .unwrap(); let json = serde_json::to_string(&resp_tx).unwrap(); Ok(Response::with((status::Ok, json))) } PartialTxPhase::SenderConfirmation => { let resp_tx = handle_sender_confirmation( &self.config, &self.keychain, &partial_tx, fluff, ).map_err(|e| { error!(LOGGER, "Phase 3 Sender Confirmation -> Problematic partial tx, looks like this: {:?}", partial_tx); api::Error::Internal(format!( "Error processing partial transaction: {:?}", e )) }) .unwrap(); let json = serde_json::to_string(&resp_tx).unwrap(); Ok(Response::with((status::Ok, json))) } _ => { error!(LOGGER, "Unhandled Phase: {:?}", partial_tx); Ok(Response::with((status::BadRequest, "Unhandled Phase"))) } } } else { Ok(Response::with((status::BadRequest, ""))) } } } fn retrieve_existing_key(wallet_data: &WalletData, key_id: Identifier) -> (Identifier, u32) { if let Some(existing) = wallet_data.get_output(&key_id) { let key_id = existing.key_id.clone(); let derivation = existing.n_child; (key_id, derivation) } else { panic!("should never happen"); } } fn next_available_key(wallet_data: &WalletData, keychain: &Keychain) -> (Identifier, u32) { let root_key_id = keychain.root_key_id(); let derivation = wallet_data.next_child(root_key_id.clone()); let key_id = keychain.derive_key_id(derivation).unwrap(); (key_id, derivation) } /// Build a coinbase output and the corresponding kernel pub fn receive_coinbase( config: &WalletConfig, keychain: &Keychain, block_fees: &BlockFees, ) -> Result<(Output, TxKernel, BlockFees), Error> { let root_key_id = keychain.root_key_id(); let height = block_fees.height; let lock_height = height + global::coinbase_maturity(); // Now acquire the wallet lock and write the new output. let (key_id, derivation) = WalletData::with_wallet(&config.data_file_dir, |wallet_data| { let key_id = block_fees.key_id(); let (key_id, derivation) = match key_id { Some(key_id) => retrieve_existing_key(&wallet_data, key_id), None => next_available_key(&wallet_data, keychain), }; // track the new output and return the stuff needed for reward wallet_data.add_output(OutputData { root_key_id: root_key_id.clone(), key_id: key_id.clone(), n_child: derivation, value: reward(block_fees.fees), status: OutputStatus::Unconfirmed, height: height, lock_height: lock_height, is_coinbase: true, block: None, merkle_proof: None, }); (key_id, derivation) })?; debug!( LOGGER, "receive_coinbase: built candidate output - {:?}, {}", key_id.clone(), derivation, ); let mut block_fees = block_fees.clone(); block_fees.key_id = Some(key_id.clone()); debug!(LOGGER, "receive_coinbase: {:?}", block_fees); let (out, kern) = Block::reward_output(&keychain, &key_id, block_fees.fees, block_fees.height) .context(ErrorKind::Keychain)?; Ok((out, kern, block_fees)) } /// builds a final transaction after the aggregated sig exchange fn build_final_transaction( tx_id: &Uuid, config: &WalletConfig, keychain: &Keychain, amount: u64, kernel_offset: BlindingFactor, excess_sig: &secp::Signature, tx: Transaction, ) -> Result { let root_key_id = keychain.root_key_id(); // double check the fee amount included in the partial tx // we don't necessarily want to just trust the sender // we could just overwrite the fee here (but we won't) due to the ecdsa sig let fee = tx_fee(tx.inputs.len(), tx.outputs.len() + 1, None); if fee != tx.fee() { return Err(ErrorKind::FeeDispute { sender_fee: tx.fee(), recipient_fee: fee, })?; } if fee > amount { info!( LOGGER, "Rejected the transfer because transaction fee ({}) exceeds received amount ({}).", amount_to_hr_string(fee), amount_to_hr_string(amount) ); return Err(ErrorKind::FeeExceedsAmount { sender_amount: amount, recipient_fee: fee, })?; } let out_amount = amount - fee; // Get output we created in earlier step // TODO: will just be one for now, support multiple later let output_vec = keychain.aggsig_get_outputs(tx_id); // operate within a lock on wallet data let (key_id, derivation) = WalletData::with_wallet(&config.data_file_dir, |wallet_data| { let (key_id, derivation) = retrieve_existing_key(&wallet_data, output_vec[0].clone()); wallet_data.add_output(OutputData { root_key_id: root_key_id.clone(), key_id: key_id.clone(), n_child: derivation, value: out_amount, status: OutputStatus::Unconfirmed, height: 0, lock_height: 0, is_coinbase: false, block: None, merkle_proof: None, }); (key_id, derivation) })?; // Build final transaction, the sum of which should // be the same as the exchanged excess values let mut final_tx = build::transaction( vec![ build::initial_tx(tx), build::output(out_amount, key_id.clone()), build::with_offset(kernel_offset), ], keychain, ).context(ErrorKind::Keychain)?; // build the final excess based on final tx and offset let final_excess = { // sum the input/output commitments on the final tx let tx_excess = final_tx.sum_commitments().context(ErrorKind::Transaction)?; // subtract the kernel_excess (built from kernel_offset) let offset_excess = keychain .secp() .commit(0, kernel_offset.secret_key(&keychain.secp()).unwrap()) .unwrap(); keychain .secp() .commit_sum(vec![tx_excess], vec![offset_excess]) .context(ErrorKind::Transaction)? }; // update the tx kernel to reflect the offset excess and sig assert_eq!(final_tx.kernels.len(), 1); final_tx.kernels[0].excess = final_excess.clone(); final_tx.kernels[0].excess_sig = excess_sig.clone(); // confirm the kernel verifies successfully before proceeding final_tx.kernels[0] .verify() .context(ErrorKind::Transaction)?; // confirm the overall transaction is valid (including the updated kernel) let _ = final_tx.validate().context(ErrorKind::Transaction)?; debug!( LOGGER, "Finalized transaction and built output - {:?}, {:?}, {}", root_key_id.clone(), key_id.clone(), derivation, ); Ok(final_tx) }