// Copyright 2018 The Grin Developers // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! core consensus.rs tests (separated to de-clutter consensus.rs) #[macro_use] extern crate grin_core as core; extern crate time; use core::consensus::{next_difficulty, valid_header_version, TargetError, DIFFICULTY_ADJUST_WINDOW, MEDIAN_TIME_WINDOW, LOWER_TIME_BOUND, UPPER_TIME_BOUND, BLOCK_TIME_WINDOW, DAMP_FACTOR, MEDIAN_TIME_INDEX}; use core::core::target::Difficulty; use std::fmt::{self, Display}; use core::global; /// Last n blocks for difficulty calculation purposes /// (copied from stats in server crate) #[derive(Clone, Debug)] pub struct DiffBlock { /// Block number (can be negative for a new chain) pub block_number: i64, /// Block network difficulty pub difficulty: u64, /// Time block was found (epoch seconds) pub time: u64, /// Duration since previous block (epoch seconds) pub duration: u64, } /// Stats on the last WINDOW blocks and the difficulty calculation /// (Copied from stats in server crate) #[derive(Clone)] pub struct DiffStats { /// latest height pub height: u64, /// Last WINDOW block data pub last_blocks: Vec, /// Average block time for last WINDOW blocks pub average_block_time: u64, /// Average WINDOW difficulty pub average_difficulty: u64, /// WINDOW size pub window_size: u64, /// Block time sum pub block_time_sum: u64, /// Block diff sum pub block_diff_sum: u64, /// latest ts pub latest_ts: u64, /// earlist ts pub earliest_ts: u64, /// ts delta pub ts_delta: u64, } impl Display for DiffBlock { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let output = format!( "Block Number: {} Difficulty: {}, Time: {}, Duration: {}", self.block_number, self.difficulty, self.time, self.duration ); Display::fmt(&output, f) } } // Builds an iterator for next difficulty calculation with the provided // constant time interval, difficulty and total length. fn repeat( interval: u64, diff: u64, len: u64, cur_time: Option, ) -> Vec> { let cur_time = match cur_time { Some(t) => t, None => time::get_time().sec as u64, }; // watch overflow here, length shouldn't be ridiculous anyhow assert!(len < std::usize::MAX as u64); let diffs = vec![Difficulty::from_num(diff); len as usize]; let times = (0..(len as usize)).map(|n| n * interval as usize).rev(); let pairs = times.zip(diffs.iter()); pairs .map(|(t, d)| Ok((cur_time + t as u64, d.clone()))) .collect::>() } // Creates a new chain with a genesis at a simulated difficulty fn create_chain_sim(diff: u64) -> Vec<((Result<(u64, Difficulty), TargetError>), DiffStats)> { println!( "adding create: {}, {}", time::get_time().sec, Difficulty::from_num(diff) ); let return_vec = vec![ Ok((time::get_time().sec as u64, Difficulty::from_num(diff))), ]; let diff_stats = get_diff_stats(&return_vec); vec![ (Ok((time::get_time().sec as u64, Difficulty::from_num(diff))), diff_stats), ] } fn get_diff_stats(chain_sim: &Vec>) -> DiffStats { // Fill out some difficulty stats for convenience let diff_iter = chain_sim.clone(); let last_blocks: Vec> = global::difficulty_data_to_vector(diff_iter.clone()); let mut last_time = last_blocks[0].clone().unwrap().0; let tip_height = chain_sim.len(); let earliest_block_height = tip_height as i64 - last_blocks.len() as i64; // Obtain the median window for the earlier time period // the first MEDIAN_TIME_WINDOW elements let mut window_earliest: Vec = last_blocks.clone() .iter() .take(MEDIAN_TIME_WINDOW as usize) .map(|n| n.clone().unwrap().0) .collect(); // pick median window_earliest.sort(); let earliest_ts = window_earliest[MEDIAN_TIME_INDEX as usize]; // Obtain the median window for the latest time period // i.e. the last MEDIAN_TIME_WINDOW elements let mut window_latest: Vec = last_blocks.clone() .iter() .skip(DIFFICULTY_ADJUST_WINDOW as usize) .map(|n| n.clone().unwrap().0) .collect(); // pick median window_latest.sort(); let latest_ts = window_latest[MEDIAN_TIME_INDEX as usize]; let mut i = 1; let sum_blocks: Vec> = global::difficulty_data_to_vector(diff_iter) .into_iter() .skip(MEDIAN_TIME_WINDOW as usize) .take(DIFFICULTY_ADJUST_WINDOW as usize) .collect(); let sum_entries: Vec = sum_blocks .iter() //.skip(1) .map(|n| { let (time, diff) = n.clone().unwrap(); let dur = time - last_time; let height = earliest_block_height + i + 1; i += 1; last_time = time; DiffBlock { block_number: height, difficulty: diff.to_num(), time: time, duration: dur, } }) .collect(); let block_time_sum = sum_entries.iter().fold(0, |sum, t| sum + t.duration); let block_diff_sum = sum_entries.iter().fold(0, |sum, d| sum + d.difficulty); i = 1; last_time = last_blocks[0].clone().unwrap().0; let diff_entries: Vec = last_blocks .iter() .skip(1) .map(|n| { let (time, diff) = n.clone().unwrap(); let dur = time - last_time; let height = earliest_block_height + i; i += 1; last_time = time; DiffBlock { block_number: height, difficulty: diff.to_num(), time: time, duration: dur, } }) .collect(); DiffStats { height: tip_height as u64, last_blocks: diff_entries, average_block_time: block_time_sum / (DIFFICULTY_ADJUST_WINDOW), average_difficulty: block_diff_sum / (DIFFICULTY_ADJUST_WINDOW), window_size: DIFFICULTY_ADJUST_WINDOW, block_time_sum: block_time_sum, block_diff_sum: block_diff_sum, latest_ts: latest_ts, earliest_ts: earliest_ts, ts_delta: latest_ts-earliest_ts, } } // Adds another 'block' to the iterator, so to speak, with difficulty calculated // from the difficulty adjustment at interval seconds from the previous block fn add_block( interval: u64, chain_sim: Vec<((Result<(u64, Difficulty), TargetError>), DiffStats)>, ) -> Vec<((Result<(u64, Difficulty), TargetError>), DiffStats)> { let mut ret_chain_sim = chain_sim.clone(); let mut return_chain: Vec<(Result<(u64, Difficulty), TargetError>)> = chain_sim.clone().iter() .map(|e| e.0.clone()) .collect(); // get last interval let diff = next_difficulty(return_chain.clone()).unwrap(); let last_elem = chain_sim.first().as_ref().unwrap().0.as_ref().unwrap(); let time = last_elem.0 + interval; return_chain.insert(0, Ok((time, diff))); let diff_stats = get_diff_stats(&return_chain); ret_chain_sim.insert(0, (Ok((time, diff)), diff_stats)); ret_chain_sim } // Adds many defined blocks fn add_blocks( intervals: Vec, chain_sim: Vec<((Result<(u64, Difficulty), TargetError>), DiffStats)>, ) -> Vec<((Result<(u64, Difficulty), TargetError>), DiffStats)> { let mut return_chain = chain_sim.clone(); for i in intervals { return_chain = add_block(i, return_chain.clone()); } return_chain } // Adds another n 'blocks' to the iterator, with difficulty calculated fn add_block_repeated( interval: u64, chain_sim: Vec<((Result<(u64, Difficulty), TargetError>), DiffStats)>, iterations: usize, ) -> Vec<((Result<(u64, Difficulty), TargetError>), DiffStats)> { let mut return_chain = chain_sim.clone(); for _ in 0..iterations { return_chain = add_block(interval, return_chain.clone()); } return_chain } // Prints the contents of the iterator and its difficulties.. useful for // tweaking fn print_chain_sim( chain_sim: Vec<((Result<(u64, Difficulty), TargetError>), DiffStats)> ){ let mut chain_sim = chain_sim.clone(); chain_sim.reverse(); let mut last_time = 0; let mut first = true; println!("Constants"); println!("DIFFICULTY_ADJUST_WINDOW: {}", DIFFICULTY_ADJUST_WINDOW); println!("BLOCK_TIME_WINDOW: {}", BLOCK_TIME_WINDOW); println!("MEDIAN_TIME_WINDOW: {}", MEDIAN_TIME_WINDOW); println!("LOWER_TIME_BOUND: {}", LOWER_TIME_BOUND); println!("UPPER_TIME_BOUND: {}", UPPER_TIME_BOUND); println!("DAMP_FACTOR: {}", DAMP_FACTOR); chain_sim.iter().enumerate().for_each(|(i, b)| { let block = b.0.as_ref().unwrap(); let stats = b.1.clone(); if first { last_time = block.0; first = false; } println!( "Height: {}, Time: {}, Interval: {}, Network difficulty:{}, Average Block Time: {}, Average Difficulty {}, Block Time Sum: {}, Block Diff Sum: {}, Latest Timestamp: {}, Earliest Timestamp: {}, Timestamp Delta: {}", i, block.0, block.0 - last_time, block.1, stats.average_block_time, stats.average_difficulty, stats.block_time_sum, stats.block_diff_sum, stats.latest_ts, stats.earliest_ts, stats.ts_delta, ); let mut sb = stats.last_blocks.clone(); sb.reverse(); for i in sb { println!(" {}", i); } last_time = block.0; }); } fn repeat_offs( from: u64, interval: u64, diff: u64, len: u64, ) -> Vec> { map_vec!( repeat(interval, diff, len, Some(from)), |e| match e.clone() { Err(e) => Err(e), Ok((t, d)) => Ok((t, d)), } ) } /// Checks different next_target adjustments and difficulty boundaries #[test] fn adjustment_scenarios() { // Use production parameters for genesis diff global::set_mining_mode(global::ChainTypes::Mainnet); // Genesis block with initial diff let chain_sim = create_chain_sim(global::initial_block_difficulty()); // Scenario 1) Hash power is massively over estimated, first block takes an hour let chain_sim = add_block_repeated(3600, chain_sim, 2); let chain_sim = add_block_repeated(1800, chain_sim, 2); let chain_sim = add_block_repeated(900, chain_sim, 10); let chain_sim = add_block_repeated(450, chain_sim, 30); let chain_sim = add_block_repeated(400, chain_sim, 30); let chain_sim = add_block_repeated(300, chain_sim, 30); println!("*********************************************************"); println!("Scenario 1) Grossly over-estimated genesis difficulty "); println!("*********************************************************"); print_chain_sim(chain_sim); println!("*********************************************************"); // Under-estimated difficulty let chain_sim = create_chain_sim(global::initial_block_difficulty()); let chain_sim = add_block_repeated(1, chain_sim, 5); let chain_sim = add_block_repeated(20, chain_sim, 5); let chain_sim = add_block_repeated(30, chain_sim, 20); println!("*********************************************************"); println!("Scenario 2) Grossly under-estimated genesis difficulty "); println!("*********************************************************"); print_chain_sim(chain_sim); println!("*********************************************************"); let just_enough = (DIFFICULTY_ADJUST_WINDOW + MEDIAN_TIME_WINDOW) as usize; // Steady difficulty for a good while, then a sudden drop let chain_sim = create_chain_sim(global::initial_block_difficulty()); let chain_sim = add_block_repeated(60, chain_sim, just_enough as usize); let chain_sim = add_block_repeated(600, chain_sim, 60); println!(""); println!("*********************************************************"); println!("Scenario 3) Sudden drop in hashpower"); println!("*********************************************************"); print_chain_sim(chain_sim); println!("*********************************************************"); // Sudden increase let chain_sim = create_chain_sim(global::initial_block_difficulty()); let chain_sim = add_block_repeated(60, chain_sim, just_enough as usize); let chain_sim = add_block_repeated(10, chain_sim, 10); println!(""); println!("*********************************************************"); println!("Scenario 4) Sudden increase in hashpower"); println!("*********************************************************"); print_chain_sim(chain_sim); println!("*********************************************************"); // Oscillations let chain_sim = create_chain_sim(global::initial_block_difficulty()); let chain_sim = add_block_repeated(60, chain_sim, just_enough as usize); let chain_sim = add_block_repeated(10, chain_sim, 10); let chain_sim = add_block_repeated(60, chain_sim, 20); let chain_sim = add_block_repeated(10, chain_sim, 10); println!(""); println!("*********************************************************"); println!("Scenario 5) Oscillations in hashpower"); println!("*********************************************************"); print_chain_sim(chain_sim); println!("*********************************************************"); // Actual testnet 2 timings let testnet2_intervals = [ 2880, 16701, 1882, 3466, 614, 605, 1551, 538, 931, 23, 690, 1397, 2112, 2058, 605, 721, 2148, 1605, 134, 1234, 1569, 482, 1775, 2732, 540, 958, 883, 3475, 518, 1346, 1926, 780, 865, 269, 1079, 141, 105, 781, 289, 256, 709, 68, 165, 1813, 3899, 1458, 955, 2336, 239, 674, 1059, 157, 214, 15, 157, 558, 1945, 1677, 1825, 1307, 1973, 660, 77, 3134, 410, 347, 537, 649, 325, 370, 2271, 106, 19, 329, ]; global::set_mining_mode(global::ChainTypes::Testnet2); let chain_sim = create_chain_sim(global::initial_block_difficulty()); let chain_sim = add_blocks(testnet2_intervals.to_vec(), chain_sim); println!(""); println!("*********************************************************"); println!("Scenario 6) Testnet2"); println!("*********************************************************"); print_chain_sim(chain_sim); println!("*********************************************************"); } /// Checks different next_target adjustments and difficulty boundaries #[test] fn next_target_adjustment() { global::set_mining_mode(global::ChainTypes::AutomatedTesting); let cur_time = time::get_time().sec as u64; assert_eq!( next_difficulty(vec![Ok((cur_time, Difficulty::one()))]).unwrap(), Difficulty::one() ); assert_eq!( next_difficulty(repeat(60, 1, DIFFICULTY_ADJUST_WINDOW, None)).unwrap(), Difficulty::one() ); // Check we don't get stuck on difficulty 1 assert_ne!( next_difficulty(repeat(1, 10, DIFFICULTY_ADJUST_WINDOW, None)).unwrap(), Difficulty::one() ); // just enough data, right interval, should stay constant let just_enough = DIFFICULTY_ADJUST_WINDOW + MEDIAN_TIME_WINDOW; assert_eq!( next_difficulty(repeat(60, 1000, just_enough, None)).unwrap(), Difficulty::from_num(1000) ); // checking averaging works let sec = DIFFICULTY_ADJUST_WINDOW / 2 + MEDIAN_TIME_WINDOW; let mut s1 = repeat(60, 500, sec, Some(cur_time)); let mut s2 = repeat_offs( cur_time + (sec * 60) as u64, 60, 1500, DIFFICULTY_ADJUST_WINDOW / 2, ); s2.append(&mut s1); assert_eq!(next_difficulty(s2).unwrap(), Difficulty::from_num(1000)); // too slow, diff goes down assert_eq!( next_difficulty(repeat(90, 1000, just_enough, None)).unwrap(), Difficulty::from_num(857) ); assert_eq!( next_difficulty(repeat(120, 1000, just_enough, None)).unwrap(), Difficulty::from_num(750) ); // too fast, diff goes up assert_eq!( next_difficulty(repeat(55, 1000, just_enough, None)).unwrap(), Difficulty::from_num(1028) ); assert_eq!( next_difficulty(repeat(45, 1000, just_enough, None)).unwrap(), Difficulty::from_num(1090) ); // hitting lower time bound, should always get the same result below assert_eq!( next_difficulty(repeat(0, 1000, just_enough, None)).unwrap(), Difficulty::from_num(1500) ); assert_eq!( next_difficulty(repeat(0, 1000, just_enough, None)).unwrap(), Difficulty::from_num(1500) ); // hitting higher time bound, should always get the same result above assert_eq!( next_difficulty(repeat(300, 1000, just_enough, None)).unwrap(), Difficulty::from_num(500) ); assert_eq!( next_difficulty(repeat(400, 1000, just_enough, None)).unwrap(), Difficulty::from_num(500) ); // We should never drop below 1 assert_eq!( next_difficulty(repeat(90, 0, just_enough, None)).unwrap(), Difficulty::from_num(1) ); } #[test] fn hard_fork_1() { assert!(valid_header_version(0, 1)); assert!(valid_header_version(10, 1)); assert!(!valid_header_version(10, 2)); assert!(valid_header_version(250_000, 1)); assert!(!valid_header_version(250_001, 1)); assert!(!valid_header_version(500_000, 1)); assert!(!valid_header_version(250_001, 2)); } // #[test] // fn hard_fork_2() { // assert!(valid_header_version(0, 1)); // assert!(valid_header_version(10, 1)); // assert!(valid_header_version(10, 2)); // assert!(valid_header_version(250_000, 1)); // assert!(!valid_header_version(250_001, 1)); // assert!(!valid_header_version(500_000, 1)); // assert!(valid_header_version(250_001, 2)); // assert!(valid_header_version(500_000, 2)); // assert!(!valid_header_version(500_001, 2)); // }