// Copyright 2018 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. extern crate blake2_rfc as blake2; extern crate grin_chain as chain; extern crate grin_core as core; extern crate grin_keychain as keychain; extern crate grin_pool as pool; extern crate grin_util as util; extern crate grin_wallet as wallet; extern crate rand; extern crate chrono; pub mod common; use std::sync::{Arc, RwLock}; use core::core::{Block, BlockHeader}; use chain::types::Tip; use chain::{txhashset, ChainStore}; use common::{clean_output_dir, test_setup, test_source, test_transaction, test_transaction_spending_coinbase, ChainAdapter}; use core::core::target::Difficulty; use keychain::{ExtKeychain, Keychain}; use wallet::libtx; #[test] fn test_transaction_pool_block_reconciliation() { let keychain: ExtKeychain = Keychain::from_random_seed().unwrap(); let db_root = ".grin_block_reconciliation".to_string(); clean_output_dir(db_root.clone()); let chain = ChainAdapter::init(db_root.clone()).unwrap(); // Initialize the chain/txhashset with an initial block // so we have a non-empty UTXO set. let header = { let height = 1; let key_id = keychain.derive_key_id(height as u32).unwrap(); let reward = libtx::reward::output(&keychain, &key_id, 0, height).unwrap(); let block = Block::new(&BlockHeader::default(), vec![], Difficulty::one(), reward).unwrap(); let mut batch = chain.store.batch().unwrap(); let mut txhashset = chain.txhashset.write().unwrap(); txhashset::extending(&mut txhashset, &mut batch, |extension| { extension.apply_block(&block) }).unwrap(); let tip = Tip::from_block(&block.header); batch.save_block_header(&block.header).unwrap(); batch.save_head(&tip).unwrap(); batch.commit().unwrap(); block.header }; // Initialize a new pool with our chain adapter. let pool = RwLock::new(test_setup(&Arc::new(chain.clone()))); // Now create tx to spend that first coinbase (now matured). // Provides us with some useful outputs to test with. let initial_tx = test_transaction_spending_coinbase(&keychain, &header, vec![10, 20, 30, 40]); let header = { let key_id = keychain.derive_key_id(2).unwrap(); let fees = initial_tx.fee(); let reward = libtx::reward::output(&keychain, &key_id, fees, 0).unwrap(); let block = Block::new(&header, vec![initial_tx], Difficulty::one(), reward).unwrap(); let mut batch = chain.store.batch().unwrap(); { let mut txhashset = chain.txhashset.write().unwrap(); txhashset::extending(&mut txhashset, &mut batch, |extension| { extension.apply_block(&block)?; Ok(()) }).unwrap(); } let tip = Tip::from_block(&block.header); batch.save_block_header(&block.header).unwrap(); batch.save_head(&tip).unwrap(); batch.commit().unwrap(); block.header }; // Preparation: We will introduce three root pool transactions. // 1. A transaction that should be invalidated because it is exactly // contained in the block. // 2. A transaction that should be invalidated because the input is // consumed in the block, although it is not exactly consumed. // 3. A transaction that should remain after block reconciliation. let block_transaction = test_transaction(&keychain, vec![10], vec![8]); let conflict_transaction = test_transaction(&keychain, vec![20], vec![12, 6]); let valid_transaction = test_transaction(&keychain, vec![30], vec![13, 15]); // We will also introduce a few children: // 4. A transaction that descends from transaction 1, that is in // turn exactly contained in the block. let block_child = test_transaction(&keychain, vec![8], vec![5, 1]); // 5. A transaction that descends from transaction 4, that is not // contained in the block at all and should be valid after // reconciliation. let pool_child = test_transaction(&keychain, vec![5], vec![3]); // 6. A transaction that descends from transaction 2 that does not // conflict with anything in the block in any way, but should be // invalidated (orphaned). let conflict_child = test_transaction(&keychain, vec![12], vec![2]); // 7. A transaction that descends from transaction 2 that should be // valid due to its inputs being satisfied by the block. let conflict_valid_child = test_transaction(&keychain, vec![6], vec![4]); // 8. A transaction that descends from transaction 3 that should be // invalidated due to an output conflict. let valid_child_conflict = test_transaction(&keychain, vec![13], vec![9]); // 9. A transaction that descends from transaction 3 that should remain // valid after reconciliation. let valid_child_valid = test_transaction(&keychain, vec![15], vec![11]); // 10. A transaction that descends from both transaction 6 and // transaction 9 let mixed_child = test_transaction(&keychain, vec![2, 11], vec![7]); let txs_to_add = vec![ block_transaction, conflict_transaction, valid_transaction.clone(), block_child, pool_child.clone(), conflict_child, conflict_valid_child.clone(), valid_child_conflict.clone(), valid_child_valid.clone(), mixed_child, ]; // First we add the above transactions to the pool. // All should be accepted. { let mut write_pool = pool.write().unwrap(); assert_eq!(write_pool.total_size(), 0); for tx in &txs_to_add { write_pool .add_to_pool(test_source(), tx.clone(), false) .unwrap(); } assert_eq!(write_pool.total_size(), txs_to_add.len()); } // Now we prepare the block that will cause the above conditions to be met. // First, the transactions we want in the block: // - Copy of 1 let block_tx_1 = test_transaction(&keychain, vec![10], vec![8]); // - Conflict w/ 2, satisfies 7 let block_tx_2 = test_transaction(&keychain, vec![20], vec![6]); // - Copy of 4 let block_tx_3 = test_transaction(&keychain, vec![8], vec![5, 1]); // - Output conflict w/ 8 let block_tx_4 = test_transaction(&keychain, vec![40], vec![9, 31]); let block_txs = vec![block_tx_1, block_tx_2, block_tx_3, block_tx_4]; // Now apply this block. let block = { let key_id = keychain.derive_key_id(3).unwrap(); let fees = block_txs.iter().map(|tx| tx.fee()).sum(); let reward = libtx::reward::output(&keychain, &key_id, fees, 0).unwrap(); let block = Block::new(&header, block_txs, Difficulty::one(), reward).unwrap(); { let mut batch = chain.store.batch().unwrap(); let mut txhashset = chain.txhashset.write().unwrap(); txhashset::extending(&mut txhashset, &mut batch, |extension| { extension.apply_block(&block)?; Ok(()) }).unwrap(); batch.commit().unwrap(); } let tip = Tip::from_block(&block.header); let batch = chain.store.batch().unwrap(); batch.save_block_header(&block.header).unwrap(); batch.save_head(&tip).unwrap(); batch.commit().unwrap(); block }; // Check the pool still contains everything we expect at this point. { let write_pool = pool.write().unwrap(); assert_eq!(write_pool.total_size(), txs_to_add.len()); } // And reconcile the pool with this latest block. { let mut write_pool = pool.write().unwrap(); write_pool.reconcile_block(&block).unwrap(); assert_eq!(write_pool.total_size(), 4); assert_eq!(write_pool.txpool.entries[0].tx, valid_transaction); assert_eq!(write_pool.txpool.entries[1].tx, pool_child); assert_eq!(write_pool.txpool.entries[2].tx, conflict_valid_child); assert_eq!(write_pool.txpool.entries[3].tx, valid_child_valid); } }