// Copyright 2018 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. extern crate env_logger; extern crate grin_core as core; extern crate grin_store as store; extern crate time; use std::fs; use core::ser::*; use core::core::pmmr::{Backend, PMMR}; use core::core::hash::{Hash, Hashed}; use store::types::prune_noop; #[test] fn pmmr_append() { let (data_dir, elems) = setup("append"); let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap(); // adding first set of 4 elements and sync let mut mmr_size = load(0, &elems[0..4], &mut backend); backend.sync().unwrap(); // adding the rest and sync again mmr_size = load(mmr_size, &elems[4..9], &mut backend); backend.sync().unwrap(); // check the resulting backend store and the computation of the root let node_hash = elems[0].hash_with_index(1); assert_eq!(backend.get(1, false).expect("").0, node_hash); let sum2 = elems[0].hash_with_index(1) + elems[1].hash_with_index(2); let sum4 = sum2 + (elems[2].hash_with_index(4) + elems[3].hash_with_index(5)); let sum8 = sum4 + ((elems[4].hash_with_index(8) + elems[5].hash_with_index(9)) + (elems[6].hash_with_index(11) + elems[7].hash_with_index(12))); let sum9 = sum8 + elems[8].hash_with_index(16); { let pmmr: PMMR = PMMR::at(&mut backend, mmr_size); assert_eq!(pmmr.root(), sum9); } teardown(data_dir); } #[test] fn pmmr_prune_compact() { let (data_dir, elems) = setup("prune_compact"); // setup the mmr store with all elements let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap(); let mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); // save the root let root: Hash; { let pmmr: PMMR = PMMR::at(&mut backend, mmr_size); root = pmmr.root(); } // pruning some choice nodes { let mut pmmr: PMMR = PMMR::at(&mut backend, mmr_size); pmmr.prune(1, 1).unwrap(); pmmr.prune(4, 1).unwrap(); pmmr.prune(5, 1).unwrap(); } backend.sync().unwrap(); // check the root and stored data { let pmmr: PMMR = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root()); // check we can still retrieve same element from leaf index 2 assert_eq!( pmmr.get(2, true).unwrap().1.unwrap(), TestElem([0, 0, 0, 2]) ); } // compact backend.check_compact(2, 2, &prune_noop).unwrap(); // recheck the root and stored data { let pmmr: PMMR = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root()); assert_eq!( pmmr.get(2, true).unwrap().1.unwrap(), TestElem([0, 0, 0, 2]) ); assert_eq!( pmmr.get(11, true).unwrap().1.unwrap(), TestElem([0, 0, 0, 7]) ); } teardown(data_dir); } #[test] fn pmmr_reload() { let (data_dir, elems) = setup("reload"); // set everything up with a first backend let mmr_size: u64; let root: Hash; { let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap(); mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); // save the root and prune some nodes so we have prune data { let mut pmmr: PMMR = PMMR::at(&mut backend, mmr_size); pmmr.dump(false); root = pmmr.root(); pmmr.prune(1, 1).unwrap(); pmmr.prune(4, 1).unwrap(); } backend.sync().unwrap(); backend.check_compact(1, 2, &prune_noop).unwrap(); backend.sync().unwrap(); assert_eq!(backend.unpruned_size().unwrap(), mmr_size); // prune some more to get rm log data { let mut pmmr: PMMR = PMMR::at(&mut backend, mmr_size); pmmr.prune(5, 1).unwrap(); } backend.sync().unwrap(); assert_eq!(backend.unpruned_size().unwrap(), mmr_size); } // create a new backend and check everything is kosher { let mut backend: store::pmmr::PMMRBackend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap(); assert_eq!(backend.unpruned_size().unwrap(), mmr_size); { let pmmr: PMMR = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root()); } assert_eq!(backend.get(5, false), None); } teardown(data_dir); } #[test] fn pmmr_rewind() { let (data_dir, elems) = setup("rewind"); let mut backend = store::pmmr::PMMRBackend::new(data_dir.clone(), None).unwrap(); // adding elements and keeping the corresponding root let mut mmr_size = load(0, &elems[0..4], &mut backend); backend.sync().unwrap(); let root1: Hash; { let pmmr: PMMR = PMMR::at(&mut backend, mmr_size); root1 = pmmr.root(); } mmr_size = load(mmr_size, &elems[4..6], &mut backend); backend.sync().unwrap(); let root2: Hash; { let pmmr: PMMR = PMMR::at(&mut backend, mmr_size); root2 = pmmr.root(); } mmr_size = load(mmr_size, &elems[6..9], &mut backend); backend.sync().unwrap(); // prune and compact the 2 first elements to spice things up { let mut pmmr: PMMR = PMMR::at(&mut backend, mmr_size); pmmr.prune(1, 1).unwrap(); pmmr.prune(2, 1).unwrap(); } backend.check_compact(1, 2, &prune_noop).unwrap(); backend.sync().unwrap(); // rewind and check the roots still match { let mut pmmr: PMMR = PMMR::at(&mut backend, mmr_size); pmmr.rewind(9, 3).unwrap(); assert_eq!(pmmr.root(), root2); } backend.sync().unwrap(); { let pmmr: PMMR = PMMR::at(&mut backend, 10); assert_eq!(pmmr.root(), root2); } { let mut pmmr: PMMR = PMMR::at(&mut backend, 10); pmmr.rewind(5, 3).unwrap(); assert_eq!(pmmr.root(), root1); } backend.sync().unwrap(); { let pmmr: PMMR = PMMR::at(&mut backend, 7); assert_eq!(pmmr.root(), root1); } teardown(data_dir); } #[test] fn pmmr_compact_horizon() { let (data_dir, elems) = setup("compact_horizon"); let root: Hash; { // setup the mmr store with all elements let mut backend = store::pmmr::PMMRBackend::new(data_dir.to_string(), None).unwrap(); let mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); // save the root { let pmmr: PMMR = PMMR::at(&mut backend, mmr_size); root = pmmr.root(); } // pruning some choice nodes with an increasing block height { let mut pmmr: PMMR = PMMR::at(&mut backend, mmr_size); pmmr.prune(1, 1).unwrap(); pmmr.prune(2, 2).unwrap(); pmmr.prune(4, 3).unwrap(); pmmr.prune(5, 4).unwrap(); } backend.sync().unwrap(); // compact backend.check_compact(2, 3, &prune_noop).unwrap(); } // recheck stored data { // recreate backend let mut backend = store::pmmr::PMMRBackend::::new(data_dir.to_string(), None).unwrap(); // 9 elements total, minus 2 compacted assert_eq!(backend.data_size().unwrap(), 7); // 15 nodes total, 2 pruned and compacted assert_eq!(backend.hash_size().unwrap(), 13); // compact some more backend.check_compact(1, 5, &prune_noop).unwrap(); } // recheck stored data { // recreate backend let backend = store::pmmr::PMMRBackend::::new(data_dir.to_string(), None).unwrap(); // 9 elements total, minus 4 compacted assert_eq!(backend.data_size().unwrap(), 5); // 15 nodes total, 6 pruned and compacted assert_eq!(backend.hash_size().unwrap(), 9); } teardown(data_dir); } fn setup(tag: &str) -> (String, Vec) { let _ = env_logger::init(); let t = time::get_time(); let data_dir = format!("./target/{}.{}-{}", t.sec, t.nsec, tag); fs::create_dir_all(data_dir.clone()).unwrap(); let elems = vec![ TestElem([0, 0, 0, 1]), TestElem([0, 0, 0, 2]), TestElem([0, 0, 0, 3]), TestElem([0, 0, 0, 4]), TestElem([0, 0, 0, 5]), TestElem([0, 0, 0, 6]), TestElem([0, 0, 0, 7]), TestElem([0, 0, 0, 8]), TestElem([1, 0, 0, 0]), ]; (data_dir, elems) } fn teardown(data_dir: String) { fs::remove_dir_all(data_dir).unwrap(); } fn load(pos: u64, elems: &[TestElem], backend: &mut store::pmmr::PMMRBackend) -> u64 { let mut pmmr = PMMR::at(backend, pos); for elem in elems { pmmr.push(elem.clone()).unwrap(); } pmmr.unpruned_size() } #[derive(Copy, Clone, Debug, PartialEq, Eq)] struct TestElem([u32; 4]); impl PMMRable for TestElem { fn len() -> usize { 16 } } impl Writeable for TestElem { fn write(&self, writer: &mut W) -> Result<(), Error> { try!(writer.write_u32(self.0[0])); try!(writer.write_u32(self.0[1])); try!(writer.write_u32(self.0[2])); writer.write_u32(self.0[3]) } } impl Readable for TestElem { fn read(reader: &mut Reader) -> Result { Ok(TestElem([ reader.read_u32()?, reader.read_u32()?, reader.read_u32()?, reader.read_u32()?, ])) } }