// Copyright 2018 The Grin Developers // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Implementation of the persistent Backend for the prunable MMR tree. use std::fs; use std::io; use std::marker; use std::path::Path; use croaring::Bitmap; use core::core::hash::{Hash, Hashed}; use core::core::pmmr::{self, family, Backend}; use core::core::BlockHeader; use core::ser::{self, PMMRable}; use leaf_set::LeafSet; use prune_list::PruneList; use rm_log::RemoveLog; use types::{prune_noop, read_ordered_vec, AppendOnlyFile}; use util::LOGGER; const PMMR_HASH_FILE: &'static str = "pmmr_hash.bin"; const PMMR_DATA_FILE: &'static str = "pmmr_data.bin"; const PMMR_LEAF_FILE: &'static str = "pmmr_leaf.bin"; const PMMR_PRUN_FILE: &'static str = "pmmr_prun.bin"; // TODO - we can get rid of these for testnet3 (only used for migration during // testnet2). "Legacy" rm_log.bin and pruned.bin files (used when migrating // existing node). const LEGACY_RM_LOG_FILE: &'static str = "pmmr_rm_log.bin"; const LEGACY_PRUNED_FILE: &'static str = "pmmr_pruned.bin"; /// PMMR persistent backend implementation. Relies on multiple facilities to /// handle writing, reading and pruning. /// /// * A main storage file appends Hash instances as they come. /// This AppendOnlyFile is also backed by a mmap for reads. /// * An in-memory backend buffers the latest batch of writes to ensure the /// PMMR can always read recent values even if they haven't been flushed to /// disk yet. /// * A leaf_set tracks unpruned (unremoved) leaf positions in the MMR.. /// * A prune_list tracks the positions of pruned (and compacted) roots in the /// MMR. pub struct PMMRBackend where T: PMMRable, { data_dir: String, prunable: bool, hash_file: AppendOnlyFile, data_file: AppendOnlyFile, leaf_set: LeafSet, prune_list: PruneList, _marker: marker::PhantomData, } impl Backend for PMMRBackend where T: PMMRable + ::std::fmt::Debug, { /// Append the provided Hashes to the backend storage. #[allow(unused_variables)] fn append(&mut self, position: u64, data: Vec<(Hash, Option)>) -> Result<(), String> { for d in data { self.hash_file.append(&mut ser::ser_vec(&d.0).unwrap()); if let Some(elem) = d.1 { self.data_file.append(&mut ser::ser_vec(&elem).unwrap()); if self.prunable { // Add the new position to our leaf_set. self.leaf_set.add(position); } } } Ok(()) } fn get_from_file(&self, position: u64) -> Option { if self.is_compacted(position) { return None; } let shift = self.prune_list.get_shift(position); // Read PMMR // The MMR starts at 1, our binary backend starts at 0 let pos = position - 1; // Must be on disk, doing a read at the correct position let hash_record_len = 32; let file_offset = ((pos - shift) as usize) * hash_record_len; let data = self.hash_file.read(file_offset, hash_record_len); match ser::deserialize(&mut &data[..]) { Ok(h) => Some(h), Err(e) => { error!( LOGGER, "Corrupted storage, could not read an entry from hash store: {:?}", e ); return None; } } } fn get_data_from_file(&self, position: u64) -> Option { if self.is_compacted(position) { return None; } let shift = self.prune_list.get_leaf_shift(position); let pos = pmmr::n_leaves(position) - 1; // Must be on disk, doing a read at the correct position let record_len = T::len(); let file_offset = ((pos - shift) as usize) * record_len; let data = self.data_file.read(file_offset, record_len); match ser::deserialize(&mut &data[..]) { Ok(h) => Some(h), Err(e) => { error!( LOGGER, "Corrupted storage, could not read an entry from data store: {:?}", e ); return None; } } } /// Get the hash at pos. /// Return None if pos is a leaf and it has been removed (or pruned or /// compacted). fn get_hash(&self, pos: u64) -> Option<(Hash)> { if self.prunable && pmmr::is_leaf(pos) && !self.leaf_set.includes(pos) { return None; } self.get_from_file(pos) } /// Get the data at pos. /// Return None if it has been removed or if pos is not a leaf node. fn get_data(&self, pos: u64) -> Option<(T)> { if !pmmr::is_leaf(pos) { return None; } if self.prunable && !self.leaf_set.includes(pos) { return None; } self.get_data_from_file(pos) } /// Rewind the PMMR backend to the given position. fn rewind( &mut self, position: u64, rewind_add_pos: &Bitmap, rewind_rm_pos: &Bitmap, ) -> Result<(), String> { // First rewind the leaf_set with the necessary added and removed positions. if self.prunable { self.leaf_set.rewind(rewind_add_pos, rewind_rm_pos); } // Rewind the hash file accounting for pruned/compacted pos let shift = self.prune_list.get_shift(position); let record_len = 32 as u64; let file_pos = (position - shift) * record_len; self.hash_file.rewind(file_pos); // Rewind the data file accounting for pruned/compacted pos let leaf_shift = self.prune_list.get_leaf_shift(position); let flatfile_pos = pmmr::n_leaves(position); let record_len = T::len() as u64; let file_pos = (flatfile_pos - leaf_shift) * record_len; self.data_file.rewind(file_pos); Ok(()) } /// Remove by insertion position. fn remove(&mut self, pos: u64) -> Result<(), String> { assert!(self.prunable, "Remove on non-prunable MMR"); self.leaf_set.remove(pos); Ok(()) } /// Return data file path fn get_data_file_path(&self) -> String { self.data_file.path() } fn snapshot(&self, header: &BlockHeader) -> Result<(), String> { self.leaf_set .snapshot(header) .map_err(|_| format!("Failed to save copy of leaf_set for {}", header.hash()))?; Ok(()) } fn dump_stats(&self) { debug!( LOGGER, "pmmr backend: unpruned: {}, hashes: {}, data: {}, leaf_set: {}, prune_list: {}", self.unpruned_size().unwrap_or(0), self.hash_size().unwrap_or(0), self.data_size().unwrap_or(0), self.leaf_set.len(), self.prune_list.len(), ); } } impl PMMRBackend where T: PMMRable + ::std::fmt::Debug, { /// Instantiates a new PMMR backend. /// Use the provided dir to store its files. pub fn new( data_dir: String, prunable: bool, header: Option<&BlockHeader> ) -> io::Result> { let hash_file = AppendOnlyFile::open(format!("{}/{}", data_dir, PMMR_HASH_FILE))?; let data_file = AppendOnlyFile::open(format!("{}/{}", data_dir, PMMR_DATA_FILE))?; let leaf_set_path = format!("{}/{}", data_dir, PMMR_LEAF_FILE); // If we received a rewound "snapshot" leaf_set file move it into // place so we use it. if let Some(header) = header { let leaf_snapshot_path = format!("{}/{}.{}", data_dir, PMMR_LEAF_FILE, header.hash()); LeafSet::copy_snapshot(leaf_set_path.clone(), leaf_snapshot_path.clone())?; } let prune_list = PruneList::open(format!("{}/{}", data_dir, PMMR_PRUN_FILE))?; let leaf_set = LeafSet::open(leaf_set_path.clone())?; Ok(PMMRBackend { data_dir, prunable, hash_file, data_file, leaf_set, prune_list, _marker: marker::PhantomData, }) } fn is_pruned(&self, pos: u64) -> bool { self.prune_list.is_pruned(pos) } fn is_pruned_root(&self, pos: u64) -> bool { self.prune_list.is_pruned_root(pos) } fn is_compacted(&self, pos: u64) -> bool { self.is_pruned(pos) && !self.is_pruned_root(pos) } /// Number of elements in the PMMR stored by this backend. Only produces the /// fully sync'd size. pub fn unpruned_size(&self) -> io::Result { let total_shift = self.prune_list.get_total_shift(); let record_len = 32; let sz = self.hash_file.size()?; Ok(sz / record_len + total_shift) } /// Number of elements in the underlying stored data. Extremely dependent on /// pruning and compaction. pub fn data_size(&self) -> io::Result { let record_len = T::len() as u64; self.data_file.size().map(|sz| sz / record_len) } /// Size of the underlying hashed data. Extremely dependent on pruning /// and compaction. pub fn hash_size(&self) -> io::Result { self.hash_file.size().map(|sz| sz / 32) } /// Syncs all files to disk. A call to sync is required to ensure all the /// data has been successfully written to disk. pub fn sync(&mut self) -> io::Result<()> { if let Err(e) = self.hash_file.flush() { return Err(io::Error::new( io::ErrorKind::Interrupted, format!("Could not write to log hash storage, disk full? {:?}", e), )); } if let Err(e) = self.data_file.flush() { return Err(io::Error::new( io::ErrorKind::Interrupted, format!("Could not write to log data storage, disk full? {:?}", e), )); } self.leaf_set.flush()?; Ok(()) } /// Discard the current, non synced state of the backend. pub fn discard(&mut self) { self.hash_file.discard(); self.leaf_set.discard(); self.data_file.discard(); } /// Return the data file path pub fn data_file_path(&self) -> String { self.get_data_file_path() } /// Takes the leaf_set at a given cutoff_pos and generates an updated /// prune_list. Saves the updated prune_list to disk /// Compacts the hash and data files based on the prune_list and saves both /// to disk. /// /// A cutoff position limits compaction on recent data. /// This will be the last position of a particular block /// to keep things aligned. /// The block_marker in the db/index for the particular block /// will have a suitable output_pos. /// This is used to enforce a horizon after which the local node /// should have all the data to allow rewinding. pub fn check_compact

( &mut self, cutoff_pos: u64, rewind_add_pos: &Bitmap, rewind_rm_pos: &Bitmap, prune_cb: P, ) -> io::Result where P: Fn(&[u8]), { assert!(self.prunable, "Trying to compact a non-prunable PMMR"); // Paths for tmp hash and data files. let tmp_prune_file_hash = format!("{}/{}.hashprune", self.data_dir, PMMR_HASH_FILE); let tmp_prune_file_data = format!("{}/{}.dataprune", self.data_dir, PMMR_DATA_FILE); // Calculate the sets of leaf positions and node positions to remove based // on the cutoff_pos provided. let (leaves_removed, pos_to_rm) = self.pos_to_rm(cutoff_pos, rewind_add_pos, rewind_rm_pos); // 1. Save compact copy of the hash file, skipping removed data. { let record_len = 32; let off_to_rm = map_vec!(pos_to_rm, |pos| { let shift = self.prune_list.get_shift(pos.into()); ((pos as u64) - 1 - shift) * record_len }); self.hash_file.save_prune( tmp_prune_file_hash.clone(), off_to_rm, record_len, &prune_noop, )?; } // 2. Save compact copy of the data file, skipping removed leaves. { let record_len = T::len() as u64; let leaf_pos_to_rm = pos_to_rm .iter() .filter(|&x| pmmr::is_leaf(x.into())) .map(|x| x as u64) .collect::>(); let off_to_rm = map_vec!(leaf_pos_to_rm, |&pos| { let flat_pos = pmmr::n_leaves(pos); let shift = self.prune_list.get_leaf_shift(pos); (flat_pos - 1 - shift) * record_len }); self.data_file.save_prune( tmp_prune_file_data.clone(), off_to_rm, record_len, prune_cb, )?; } // 3. Update the prune list and write to disk. { for pos in leaves_removed.iter() { self.prune_list.add(pos.into()); } self.prune_list.flush()?; } // 4. Rename the compact copy of hash file and reopen it. fs::rename( tmp_prune_file_hash.clone(), format!("{}/{}", self.data_dir, PMMR_HASH_FILE), )?; self.hash_file = AppendOnlyFile::open(format!("{}/{}", self.data_dir, PMMR_HASH_FILE))?; // 5. Rename the compact copy of the data file and reopen it. fs::rename( tmp_prune_file_data.clone(), format!("{}/{}", self.data_dir, PMMR_DATA_FILE), )?; self.data_file = AppendOnlyFile::open(format!("{}/{}", self.data_dir, PMMR_DATA_FILE))?; // 6. Write the leaf_set to disk. // Optimize the bitmap storage in the process. self.leaf_set.flush()?; Ok(true) } fn pos_to_rm( &self, cutoff_pos: u64, rewind_add_pos: &Bitmap, rewind_rm_pos: &Bitmap, ) -> (Bitmap, Bitmap) { let mut expanded = Bitmap::create(); let leaf_pos_to_rm = self.leaf_set.removed_pre_cutoff( cutoff_pos, rewind_add_pos, rewind_rm_pos, &self.prune_list, ); for x in leaf_pos_to_rm.iter() { expanded.add(x); let mut current = x as u64; loop { let (parent, sibling) = family(current); let sibling_pruned = self.is_pruned_root(sibling); // if sibling previously pruned // push it back onto list of pos to remove // so we can remove it and traverse up to parent if sibling_pruned { expanded.add(sibling as u32); } if sibling_pruned || expanded.contains(sibling as u32) { expanded.add(parent as u32); current = parent; } else { break; } } } (leaf_pos_to_rm, removed_excl_roots(expanded)) } } /// Filter remove list to exclude roots. /// We want to keep roots around so we have hashes for Merkle proofs. fn removed_excl_roots(removed: Bitmap) -> Bitmap { removed .iter() .filter(|pos| { let (parent_pos, _) = family(*pos as u64); removed.contains(parent_pos as u32) }) .collect() }