// Copyright 2016 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Implementation of Cuckoo Cycle designed by John Tromp. Ported to Rust from //! the C and Java code at https://github.com/tromp/cuckoo. Note that only the //! simple miner is included, mostly for testing purposes. John Tromp's Tomato //! miner will be much faster in almost every environment. use std::collections::HashSet; use std::cmp; use crypto::digest::Digest; use crypto::sha2::Sha256; use consensus::PROOFSIZE; use core::Proof; use pow::siphash::siphash24; const MAXPATHLEN: usize = 8192; #[derive(Debug)] pub enum Error { PathError, NoSolutionError, } /// An edge in the Cuckoo graph, simply references two u64 nodes. #[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Eq, Ord, Hash)] struct Edge { u: u64, v: u64, } pub struct Cuckoo { mask: u64, size: u64, v: [u64; 4], } impl Cuckoo { /// Initializes a new Cuckoo Cycle setup, using the provided byte array to /// generate a seed. In practice for PoW applications the byte array is a /// serialized block header. pub fn new(header: &[u8], sizeshift: u32) -> Cuckoo { let size = 1 << sizeshift; let mut hasher = Sha256::new(); let mut hashed = [0; 32]; hasher.input(header); hasher.result(&mut hashed); let k0 = u8_to_u64(hashed, 0); let k1 = u8_to_u64(hashed, 8); let mut v = [0; 4]; v[0] = k0 ^ 0x736f6d6570736575; v[1] = k1 ^ 0x646f72616e646f6d; v[2] = k0 ^ 0x6c7967656e657261; v[3] = k1 ^ 0x7465646279746573; Cuckoo { v: v, size: size, mask: (1 << sizeshift) / 2 - 1, } } /// Generates a node in the cuckoo graph generated from our seed. A node is /// simply materialized as a u64 from a nonce and an offset (generally 0 or /// 1). fn new_node(&self, nonce: u64, uorv: u64) -> u64 { return ((siphash24(self.v, 2 * nonce + uorv) & self.mask) << 1) | uorv; } /// Creates a new edge in the cuckoo graph generated by our seed from a /// nonce. Generates two node coordinates from the nonce and links them /// together. fn new_edge(&self, nonce: u64) -> Edge { Edge { u: self.new_node(nonce, 0), v: self.new_node(nonce, 1), } } /// Assuming increasing nonces all smaller than easiness, verifies the /// nonces form a cycle in a Cuckoo graph. Each nonce generates an edge, we /// build the nodes on both side of that edge and count the connections. pub fn verify(&self, proof: Proof, ease: u64) -> bool { let easiness = ease * (self.size as u64) / 100; let nonces = proof.to_u64s(); let mut us = [0; PROOFSIZE]; let mut vs = [0; PROOFSIZE]; for n in 0..PROOFSIZE { if nonces[n] >= easiness || (n != 0 && nonces[n] <= nonces[n - 1]) { return false; } us[n] = self.new_node(nonces[n], 0); vs[n] = self.new_node(nonces[n], 1); } let mut i = 0; let mut count = PROOFSIZE; loop { let mut j = i; for k in 0..PROOFSIZE { // find unique other j with same vs[j] if k != i && vs[k] == vs[i] { if j != i { return false; } j = k; } } if j == i { return false; } i = j; for k in 0..PROOFSIZE { // find unique other i with same us[i] if k != j && us[k] == us[j] { if i != j { return false; } i = k; } } if i == j { return false; } count -= 2; if i == 0 { break; } } count == 0 } } /// Miner for the Cuckoo Cycle algorithm. While the verifier will work for /// graph sizes up to a u64, the miner is limited to u32 to be more memory /// compact (so shift <= 32). Non-optimized for now and and so mostly used for /// tests, being impractical with sizes greater than 2^22. pub struct Miner { easiness: u64, cuckoo: Cuckoo, graph: Vec, } /// What type of cycle we have found? enum CycleSol { /// A cycle of the right length is a valid proof. ValidProof([u32; PROOFSIZE]), /// A cycle of the wrong length is great, but not a proof. InvalidCycle(usize), /// No cycles have been found. NoCycle, } impl Miner { pub fn new(header: &[u8], ease: u32, sizeshift: u32) -> Miner { let cuckoo = Cuckoo::new(header, sizeshift); let size = 1 << sizeshift; let graph = vec![0; size + 1]; let easiness = (ease as u64) * (size as u64) / 100; Miner { easiness: easiness, cuckoo: cuckoo, graph: graph, } } pub fn mine(&mut self) -> Result { let mut us = [0; MAXPATHLEN]; let mut vs = [0; MAXPATHLEN]; for nonce in 0..self.easiness { us[0] = self.cuckoo.new_node(nonce, 0) as u32; vs[0] = self.cuckoo.new_node(nonce, 1) as u32; let u = self.graph[us[0] as usize]; let v = self.graph[vs[0] as usize]; if us[0] == 0 { continue; // ignore duplicate edges } let nu = try!(self.path(u, &mut us)) as usize; let nv = try!(self.path(v, &mut vs)) as usize; let sol = self.find_sol(nu, &us, nv, &vs); match sol { CycleSol::ValidProof(res) => return Ok(Proof(res)), CycleSol::InvalidCycle(_) => continue, CycleSol::NoCycle => { self.update_graph(nu, &us, nv, &vs); } } } Err(Error::NoSolutionError) } fn path(&self, mut u: u32, us: &mut [u32]) -> Result { let mut nu = 0; while u != 0 { nu += 1; if nu >= MAXPATHLEN { while nu != 0 && us[(nu - 1) as usize] != u { nu -= 1; } return Err(Error::PathError); } us[nu as usize] = u; u = self.graph[u as usize]; } Ok(nu as u32) } fn update_graph(&mut self, mut nu: usize, us: &[u32], mut nv: usize, vs: &[u32]) { if nu < nv { while nu != 0 { nu -= 1; self.graph[us[nu + 1] as usize] = us[nu]; } self.graph[us[0] as usize] = vs[0]; } else { while nv != 0 { nv -= 1; self.graph[vs[nv + 1] as usize] = vs[nv]; } self.graph[vs[0] as usize] = us[0]; } } fn find_sol(&self, mut nu: usize, us: &[u32], mut nv: usize, vs: &[u32]) -> CycleSol { if us[nu] == vs[nv] { let min = cmp::min(nu, nv); nu -= min; nv -= min; while us[nu] != vs[nv] { nu += 1; nv += 1; } if nu + nv + 1 == PROOFSIZE { self.solution(&us, nu as u32, &vs, nv as u32) } else { CycleSol::InvalidCycle(nu + nv + 1) } } else { CycleSol::NoCycle } } fn solution(&self, us: &[u32], mut nu: u32, vs: &[u32], mut nv: u32) -> CycleSol { let mut cycle = HashSet::new(); cycle.insert(Edge { u: us[0] as u64, v: vs[0] as u64, }); while nu != 0 { // u's in even position; v's in odd nu -= 1; cycle.insert(Edge { u: us[((nu + 1) & !1) as usize] as u64, v: us[(nu | 1) as usize] as u64, }); } while nv != 0 { // u's in odd position; v's in even nv -= 1; cycle.insert(Edge { u: vs[(nv | 1) as usize] as u64, v: vs[((nv + 1) & !1) as usize] as u64, }); } let mut n = 0; let mut sol = [0; PROOFSIZE]; for nonce in 0..self.easiness { let edge = self.cuckoo.new_edge(nonce); if cycle.contains(&edge) { sol[n] = nonce as u32; n += 1; cycle.remove(&edge); } } return if n == PROOFSIZE { CycleSol::ValidProof(sol) } else { CycleSol::NoCycle }; } } /// Utility to transform a 8 bytes of a byte array into a u64. fn u8_to_u64(p: [u8; 32], i: usize) -> u64 { (p[i] as u64) | (p[i + 1] as u64) << 8 | (p[i + 2] as u64) << 16 | (p[i + 3] as u64) << 24 | (p[i + 4] as u64) << 32 | (p[i + 5] as u64) << 40 | (p[i + 6] as u64) << 48 | (p[i + 7] as u64) << 56 } #[cfg(test)] mod test { use super::*; use core::Proof; static V1: Proof = Proof([0xe13, 0x410c, 0x7974, 0x8317, 0xb016, 0xb992, 0xe3c8, 0x1038a, 0x116f0, 0x15ed2, 0x165a2, 0x17793, 0x17dd1, 0x1f885, 0x20932, 0x20936, 0x2171b, 0x28968, 0x2b184, 0x30b8e, 0x31d28, 0x35782, 0x381ea, 0x38321, 0x3b414, 0x3e14b, 0x43615, 0x49a51, 0x4a319, 0x58271, 0x5dbb9, 0x5dbcf, 0x62db4, 0x653d2, 0x655f6, 0x66382, 0x7057d, 0x765b0, 0x79c7c, 0x83167, 0x86e7b, 0x8a5f4]); static V2: Proof = Proof([0x33b8, 0x3fd9, 0x8f2b, 0xba0d, 0x11e2d, 0x1d51d, 0x2786e, 0x29625, 0x2a862, 0x2a972, 0x2e6d7, 0x319df, 0x37ce7, 0x3f771, 0x4373b, 0x439b7, 0x48626, 0x49c7d, 0x4a6f1, 0x4a808, 0x4e518, 0x519e3, 0x526bb, 0x54988, 0x564e9, 0x58a6c, 0x5a4dd, 0x63fa2, 0x68ad1, 0x69e52, 0x6bf53, 0x70841, 0x76343, 0x763a4, 0x79681, 0x7d006, 0x7d633, 0x7eebe, 0x7fe7c, 0x811fa, 0x863c1, 0x8b149]); static V3: Proof = Proof([0x24ae, 0x5180, 0x9f3d, 0xd379, 0x102c9, 0x15787, 0x16df4, 0x19509, 0x19a78, 0x235a0, 0x24210, 0x24410, 0x2567f, 0x282c3, 0x2d986, 0x2efde, 0x319d7, 0x334d7, 0x336dd, 0x34296, 0x35809, 0x3ad40, 0x46d81, 0x48c92, 0x4b374, 0x4c353, 0x4fe4c, 0x50e4f, 0x53202, 0x5d167, 0x6527c, 0x6a8b5, 0x6c70d, 0x76d90, 0x794f4, 0x7c411, 0x7c5d4, 0x7f59f, 0x7fead, 0x872d8, 0x875b4, 0x95c6b]); // cuckoo28 at 50% edges of letter 'u' static V4: Proof = Proof([0x1abd16, 0x7bb47e, 0x860253, 0xfad0b2, 0x121aa4d, 0x150a10b, 0x20605cb, 0x20ae7e3, 0x235a9be, 0x2640f4a, 0x2724c36, 0x2a6d38c, 0x2c50b28, 0x30850f2, 0x309668a, 0x30c85bd, 0x345f42c, 0x3901676, 0x432838f, 0x472158a, 0x4d04e9d, 0x4d6a987, 0x4f577bf, 0x4fbc49c, 0x593978d, 0x5acd98f, 0x5e60917, 0x6310602, 0x6385e88, 0x64f149c, 0x66d472e, 0x68e4df9, 0x6b4a89c, 0x6bb751d, 0x6e09792, 0x6e57e1d, 0x6ecfcdd, 0x70abddc, 0x7291dfd, 0x788069e, 0x79a15b1, 0x7d1a1e9]); /// Find a 42-cycle on Cuckoo20 at 75% easiness and verifiy against a few /// known cycle proofs /// generated by other implementations. #[test] fn mine20_vectors() { let nonces1 = Miner::new(&[49], 75, 20).mine().unwrap(); assert_eq!(V1, nonces1); let nonces2 = Miner::new(&[50], 70, 20).mine().unwrap(); assert_eq!(V2, nonces2); let nonces3 = Miner::new(&[51], 70, 20).mine().unwrap(); assert_eq!(V3, nonces3); } #[test] fn validate20_vectors() { assert!(Cuckoo::new(&[49], 20).verify(V1.clone(), 75)); assert!(Cuckoo::new(&[50], 20).verify(V2.clone(), 70)); assert!(Cuckoo::new(&[51], 20).verify(V3.clone(), 70)); } #[test] fn validate28_vectors() { assert!(Cuckoo::new(&[117], 28).verify(V4.clone(), 50)); } #[test] fn validate_fail() { // edge checks assert!(!Cuckoo::new(&[49], 20).verify(Proof([0; 42]), 75)); assert!(!Cuckoo::new(&[49], 20).verify(Proof([0xffff; 42]), 75)); // wrong data for proof assert!(!Cuckoo::new(&[50], 20).verify(V1.clone(), 75)); assert!(!Cuckoo::new(&[117], 20).verify(V4.clone(), 50)); } #[test] fn mine20_validate() { // cuckoo20 for n in 1..5 { let h = [n; 32]; let nonces = Miner::new(&h, 75, 20).mine().unwrap(); assert!(Cuckoo::new(&h, 20).verify(nonces, 75)); } // cuckoo18 for n in 1..5 { let h = [n; 32]; let nonces = Miner::new(&h, 75, 18).mine().unwrap(); assert!(Cuckoo::new(&h, 18).verify(nonces, 75)); } } }