// Copyright 2018 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. extern crate blake2_rfc as blake2; extern crate grin_chain as chain; extern crate grin_core as core; extern crate grin_keychain as keychain; extern crate grin_pool as pool; extern crate grin_util as util; extern crate grin_wallet as wallet; extern crate chrono; extern crate rand; pub mod common; use std::sync::{Arc, RwLock}; use chain::txhashset; use chain::types::Tip; use common::{ clean_output_dir, test_setup, test_source, test_transaction, test_transaction_spending_coinbase, ChainAdapter, }; use core::core::hash::Hashed; use core::core::verifier_cache::LruVerifierCache; use core::core::{transaction, Block, BlockHeader}; use core::pow::Difficulty; use keychain::{ExtKeychain, Keychain}; use wallet::libtx; /// Test we can add some txs to the pool (both stempool and txpool). #[test] fn test_the_transaction_pool() { let keychain: ExtKeychain = Keychain::from_random_seed().unwrap(); let db_root = ".grin_transaction_pool".to_string(); clean_output_dir(db_root.clone()); let chain = ChainAdapter::init(db_root.clone()).unwrap(); let verifier_cache = Arc::new(RwLock::new(LruVerifierCache::new())); // Initialize the chain/txhashset with a few blocks, // so we have a non-empty UTXO set. let header = { let height = 1; let key_id = keychain.derive_key_id(height as u32).unwrap(); let reward = libtx::reward::output(&keychain, &key_id, 0, height).unwrap(); let mut block = Block::new(&BlockHeader::default(), vec![], Difficulty::one(), reward).unwrap(); let mut txhashset = chain.txhashset.write().unwrap(); let mut batch = chain.store.batch().unwrap(); txhashset::extending(&mut txhashset, &mut batch, |extension| { extension.apply_block(&block)?; // Now set the roots and sizes as necessary on the block header. let roots = extension.roots(); block.header.output_root = roots.output_root; block.header.range_proof_root = roots.rproof_root; block.header.kernel_root = roots.kernel_root; let sizes = extension.sizes(); block.header.output_mmr_size = sizes.0; block.header.kernel_mmr_size = sizes.2; Ok(()) }).unwrap(); let tip = Tip::from_block(&block.header); batch.save_block_header(&block.header).unwrap(); batch.save_head(&tip).unwrap(); batch.commit().unwrap(); block.header }; // Initialize a new pool with our chain adapter. let pool = RwLock::new(test_setup(Arc::new(chain.clone()), verifier_cache.clone())); // Now create tx to spend a coinbase, giving us some useful outputs for testing // with. let initial_tx = { test_transaction_spending_coinbase( &keychain, &header, vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400], ) }; // Add this tx to the pool (stem=false, direct to txpool). { let mut write_pool = pool.write().unwrap(); write_pool .add_to_pool(test_source(), initial_tx, false, &header.hash()) .unwrap(); assert_eq!(write_pool.total_size(), 1); } // tx1 spends some outputs from the initial test tx. let tx1 = test_transaction(&keychain, vec![500, 600], vec![499, 599]); // tx2 spends some outputs from both tx1 and the initial test tx. let tx2 = test_transaction(&keychain, vec![499, 700], vec![498]); // Take a write lock and add a couple of tx entries to the pool. { let mut write_pool = pool.write().unwrap(); // Check we have a single initial tx in the pool. assert_eq!(write_pool.total_size(), 1); // First, add a simple tx to the pool in "stem" mode. write_pool .add_to_pool(test_source(), tx1.clone(), true, &header.hash()) .unwrap(); assert_eq!(write_pool.total_size(), 1); assert_eq!(write_pool.stempool.size(), 1); // Add another tx spending outputs from the previous tx. write_pool .add_to_pool(test_source(), tx2.clone(), true, &header.hash()) .unwrap(); assert_eq!(write_pool.total_size(), 1); assert_eq!(write_pool.stempool.size(), 2); } // Test adding the exact same tx multiple times (same kernel signature). // This will fail during tx aggregation due to duplicate outputs and duplicate // kernels. { let mut write_pool = pool.write().unwrap(); assert!( write_pool .add_to_pool(test_source(), tx1.clone(), true, &header.hash()) .is_err() ); } // Test adding a duplicate tx with the same input and outputs (not the *same* // tx). { let tx1a = test_transaction(&keychain, vec![500, 600], vec![499, 599]); let mut write_pool = pool.write().unwrap(); assert!( write_pool .add_to_pool(test_source(), tx1a, true, &header.hash()) .is_err() ); } // Test adding a tx attempting to spend a non-existent output. { let bad_tx = test_transaction(&keychain, vec![10_001], vec![10_000]); let mut write_pool = pool.write().unwrap(); assert!( write_pool .add_to_pool(test_source(), bad_tx, true, &header.hash()) .is_err() ); } // Test adding a tx that would result in a duplicate output (conflicts with // output from tx2). For reasons of security all outputs in the UTXO set must // be unique. Otherwise spending one will almost certainly cause the other // to be immediately stolen via a "replay" tx. { let tx = test_transaction(&keychain, vec![900], vec![498]); let mut write_pool = pool.write().unwrap(); assert!( write_pool .add_to_pool(test_source(), tx, true, &header.hash()) .is_err() ); } // Confirm the tx pool correctly identifies an invalid tx (already spent). { let mut write_pool = pool.write().unwrap(); let tx3 = test_transaction(&keychain, vec![500], vec![497]); assert!( write_pool .add_to_pool(test_source(), tx3, true, &header.hash()) .is_err() ); assert_eq!(write_pool.total_size(), 1); assert_eq!(write_pool.stempool.size(), 2); } // Check we can take some entries from the stempool and "fluff" them into the // txpool. This also exercises multi-kernel txs. { let mut write_pool = pool.write().unwrap(); let agg_tx = write_pool .stempool .aggregate_transaction() .unwrap() .unwrap(); assert_eq!(agg_tx.kernels().len(), 2); write_pool .add_to_pool(test_source(), agg_tx, false, &header.hash()) .unwrap(); assert_eq!(write_pool.total_size(), 2); } // Now check we can correctly deaggregate a multi-kernel tx based on current // contents of the txpool. // We will do this be adding a new tx to the pool // that is a superset of a tx already in the pool. { let mut write_pool = pool.write().unwrap(); let tx4 = test_transaction(&keychain, vec![800], vec![799]); // tx1 and tx2 are already in the txpool (in aggregated form) // tx4 is the "new" part of this aggregated tx that we care about let agg_tx = transaction::aggregate(vec![tx1.clone(), tx2.clone(), tx4], verifier_cache.clone()) .unwrap(); write_pool .add_to_pool(test_source(), agg_tx, false, &header.hash()) .unwrap(); assert_eq!(write_pool.total_size(), 3); let entry = write_pool.txpool.entries.last().unwrap(); assert_eq!(entry.tx.kernels().len(), 1); assert_eq!(entry.src.debug_name, "deagg"); } // Check we cannot "double spend" an output spent in a previous block. // We use the initial coinbase output here for convenience. { let mut write_pool = pool.write().unwrap(); let double_spend_tx = { test_transaction_spending_coinbase(&keychain, &header, vec![1000]) }; // check we cannot add a double spend to the stempool assert!( write_pool .add_to_pool(test_source(), double_spend_tx.clone(), true, &header.hash()) .is_err() ); // check we cannot add a double spend to the txpool assert!( write_pool .add_to_pool( test_source(), double_spend_tx.clone(), false, &header.hash() ) .is_err() ); } }