// Copyright 2018 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. pub mod common; use crate::common::{new_block, tx1i2o, tx2i1o, txspend1i1o}; use crate::core::consensus::BLOCK_OUTPUT_WEIGHT; use crate::core::core::block::Error; use crate::core::core::hash::Hashed; use crate::core::core::id::ShortIdentifiable; use crate::core::core::transaction::{self, Transaction}; use crate::core::core::verifier_cache::{LruVerifierCache, VerifierCache}; use crate::core::core::Committed; use crate::core::core::{Block, BlockHeader, CompactBlock, KernelFeatures, OutputFeatures}; use crate::core::libtx::build::{self, input, output, with_fee}; use crate::core::{global, ser}; use crate::keychain::{BlindingFactor, ExtKeychain, Keychain}; use crate::util::secp; use crate::util::RwLock; use chrono::Duration; use grin_core as core; use grin_keychain as keychain; use grin_util as util; use std::sync::Arc; use std::time::Instant; fn verifier_cache() -> Arc> { Arc::new(RwLock::new(LruVerifierCache::new())) } // Too slow for now #[test] // TODO: make this fast enough or add similar but faster test? #[allow(dead_code)] fn too_large_block() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let max_out = global::max_block_weight() / BLOCK_OUTPUT_WEIGHT; let mut pks = vec![]; for n in 0..(max_out + 1) { pks.push(ExtKeychain::derive_key_id(1, n as u32, 0, 0, 0)); } let mut parts = vec![]; for _ in 0..max_out { parts.push(output(5, pks.pop().unwrap())); } let now = Instant::now(); parts.append(&mut vec![input(500000, pks.pop().unwrap()), with_fee(2)]); let tx = build::transaction(parts, &keychain).unwrap(); println!("Build tx: {}", now.elapsed().as_secs()); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![&tx], &keychain, &prev, &key_id); assert!(b .validate(&BlindingFactor::zero(), verifier_cache()) .is_err()); } #[test] // block with no inputs/outputs/kernels // no fees, no reward, no coinbase fn very_empty_block() { let b = Block::with_header(BlockHeader::default()); assert_eq!( b.verify_coinbase(), Err(Error::Secp(secp::Error::IncorrectCommitSum)) ); } #[test] // builds a block with a tx spending another and check that cut_through occurred fn block_with_cut_through() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0); let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0); let mut btx1 = tx2i1o(); let mut btx2 = build::transaction( vec![input(7, key_id1), output(5, key_id2.clone()), with_fee(2)], &keychain, ) .unwrap(); // spending tx2 - reuse key_id2 let mut btx3 = txspend1i1o(5, &keychain, key_id2.clone(), key_id3); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block( vec![&mut btx1, &mut btx2, &mut btx3], &keychain, &prev, &key_id, ); // block should have been automatically compacted (including reward // output) and should still be valid b.validate(&BlindingFactor::zero(), verifier_cache()) .unwrap(); assert_eq!(b.inputs().len(), 3); assert_eq!(b.outputs().len(), 3); } #[test] fn empty_block_with_coinbase_is_valid() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![], &keychain, &prev, &key_id); assert_eq!(b.inputs().len(), 0); assert_eq!(b.outputs().len(), 1); assert_eq!(b.kernels().len(), 1); let coinbase_outputs = b .outputs() .iter() .filter(|out| out.is_coinbase()) .map(|o| o.clone()) .collect::>(); assert_eq!(coinbase_outputs.len(), 1); let coinbase_kernels = b .kernels() .iter() .filter(|out| out.is_coinbase()) .map(|o| o.clone()) .collect::>(); assert_eq!(coinbase_kernels.len(), 1); // the block should be valid here (single coinbase output with corresponding // txn kernel) assert!(b .validate(&BlindingFactor::zero(), verifier_cache()) .is_ok()); } #[test] // test that flipping the COINBASE flag on the output features // invalidates the block and specifically it causes verify_coinbase to fail // additionally verifying the merkle_inputs_outputs also fails fn remove_coinbase_output_flag() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let mut b = new_block(vec![], &keychain, &prev, &key_id); assert!(b.outputs()[0].is_coinbase()); b.outputs_mut()[0].features = OutputFeatures::Plain; assert_eq!(b.verify_coinbase(), Err(Error::CoinbaseSumMismatch)); assert!(b .verify_kernel_sums(b.header.overage(), b.header.total_kernel_offset()) .is_ok()); assert_eq!( b.validate(&BlindingFactor::zero(), verifier_cache()), Err(Error::CoinbaseSumMismatch) ); } #[test] // test that flipping the COINBASE flag on the kernel features // invalidates the block and specifically it causes verify_coinbase to fail fn remove_coinbase_kernel_flag() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let mut b = new_block(vec![], &keychain, &prev, &key_id); assert!(b.kernels()[0].is_coinbase()); b.kernels_mut()[0].features = KernelFeatures::Plain; // Flipping the coinbase flag results in kernels not summing correctly. assert_eq!( b.verify_coinbase(), Err(Error::Secp(secp::Error::IncorrectCommitSum)) ); // Also results in the block no longer validating correctly // because the message being signed on each tx kernel includes the kernel features. assert_eq!( b.validate(&BlindingFactor::zero(), verifier_cache()), Err(Error::Transaction(transaction::Error::IncorrectSignature)) ); } #[test] fn serialize_deserialize_block_header() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![], &keychain, &prev, &key_id); let header1 = b.header; let mut vec = Vec::new(); ser::serialize(&mut vec, &header1).expect("serialization failed"); let header2: BlockHeader = ser::deserialize(&mut &vec[..]).unwrap(); assert_eq!(header1.hash(), header2.hash()); assert_eq!(header1, header2); } #[test] fn serialize_deserialize_block() { let tx1 = tx1i2o(); let keychain = ExtKeychain::from_random_seed(false).unwrap(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![&tx1], &keychain, &prev, &key_id); let mut vec = Vec::new(); ser::serialize(&mut vec, &b).expect("serialization failed"); let b2: Block = ser::deserialize(&mut &vec[..]).unwrap(); assert_eq!(b.hash(), b2.hash()); assert_eq!(b.header, b2.header); assert_eq!(b.inputs(), b2.inputs()); assert_eq!(b.outputs(), b2.outputs()); assert_eq!(b.kernels(), b2.kernels()); } #[test] fn empty_block_serialized_size() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![], &keychain, &prev, &key_id); let mut vec = Vec::new(); ser::serialize(&mut vec, &b).expect("serialization failed"); let target_len = 1_265; assert_eq!(vec.len(), target_len); } #[test] fn block_single_tx_serialized_size() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let tx1 = tx1i2o(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![&tx1], &keychain, &prev, &key_id); let mut vec = Vec::new(); ser::serialize(&mut vec, &b).expect("serialization failed"); let target_len = 2_847; assert_eq!(vec.len(), target_len); } #[test] fn empty_compact_block_serialized_size() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![], &keychain, &prev, &key_id); let cb: CompactBlock = b.into(); let mut vec = Vec::new(); ser::serialize(&mut vec, &cb).expect("serialization failed"); let target_len = 1_273; assert_eq!(vec.len(), target_len); } #[test] fn compact_block_single_tx_serialized_size() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let tx1 = tx1i2o(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![&tx1], &keychain, &prev, &key_id); let cb: CompactBlock = b.into(); let mut vec = Vec::new(); ser::serialize(&mut vec, &cb).expect("serialization failed"); let target_len = 1_279; assert_eq!(vec.len(), target_len); } #[test] fn block_10_tx_serialized_size() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); global::set_mining_mode(global::ChainTypes::Mainnet); let mut txs = vec![]; for _ in 0..10 { let tx = tx1i2o(); txs.push(tx); } let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(txs.iter().collect(), &keychain, &prev, &key_id); let mut vec = Vec::new(); ser::serialize(&mut vec, &b).expect("serialization failed"); let target_len = 17_085; assert_eq!(vec.len(), target_len,); } #[test] fn compact_block_10_tx_serialized_size() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let mut txs = vec![]; for _ in 0..10 { let tx = tx1i2o(); txs.push(tx); } let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(txs.iter().collect(), &keychain, &prev, &key_id); let cb: CompactBlock = b.into(); let mut vec = Vec::new(); ser::serialize(&mut vec, &cb).expect("serialization failed"); let target_len = 1_333; assert_eq!(vec.len(), target_len,); } #[test] fn compact_block_hash_with_nonce() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let tx = tx1i2o(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![&tx], &keychain, &prev, &key_id); let cb1: CompactBlock = b.clone().into(); let cb2: CompactBlock = b.clone().into(); // random nonce will not affect the hash of the compact block itself // hash is based on header POW only assert!(cb1.nonce != cb2.nonce); assert_eq!(b.hash(), cb1.hash()); assert_eq!(cb1.hash(), cb2.hash()); assert!(cb1.kern_ids()[0] != cb2.kern_ids()[0]); // check we can identify the specified kernel from the short_id // correctly in both of the compact_blocks assert_eq!( cb1.kern_ids()[0], tx.kernels()[0].short_id(&cb1.hash(), cb1.nonce) ); assert_eq!( cb2.kern_ids()[0], tx.kernels()[0].short_id(&cb2.hash(), cb2.nonce) ); } #[test] fn convert_block_to_compact_block() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let tx1 = tx1i2o(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![&tx1], &keychain, &prev, &key_id); let cb: CompactBlock = b.clone().into(); assert_eq!(cb.out_full().len(), 1); assert_eq!(cb.kern_full().len(), 1); assert_eq!(cb.kern_ids().len(), 1); assert_eq!( cb.kern_ids()[0], b.kernels() .iter() .find(|x| !x.is_coinbase()) .unwrap() .short_id(&cb.hash(), cb.nonce) ); } #[test] fn hydrate_empty_compact_block() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![], &keychain, &prev, &key_id); let cb: CompactBlock = b.clone().into(); let hb = Block::hydrate_from(cb, vec![]).unwrap(); assert_eq!(hb.header, b.header); assert_eq!(hb.outputs(), b.outputs()); assert_eq!(hb.kernels(), b.kernels()); } #[test] fn serialize_deserialize_compact_block() { let keychain = ExtKeychain::from_random_seed(false).unwrap(); let tx1 = tx1i2o(); let prev = BlockHeader::default(); let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let b = new_block(vec![&tx1], &keychain, &prev, &key_id); let mut cb1: CompactBlock = b.into(); let mut vec = Vec::new(); ser::serialize(&mut vec, &cb1).expect("serialization failed"); // After header serialization, timestamp will lose 'nanos' info, that's the designed behavior. // To suppress 'nanos' difference caused assertion fail, we force b.header also lose 'nanos'. let origin_ts = cb1.header.timestamp; cb1.header.timestamp = origin_ts - Duration::nanoseconds(origin_ts.timestamp_subsec_nanos() as i64); let cb2: CompactBlock = ser::deserialize(&mut &vec[..]).unwrap(); assert_eq!(cb1.header, cb2.header); assert_eq!(cb1.kern_ids(), cb2.kern_ids()); } // Duplicate a range proof from a valid output into another of the same amount #[test] fn same_amount_outputs_copy_range_proof() { let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap(); let key_id1 = keychain::ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let key_id2 = keychain::ExtKeychain::derive_key_id(1, 2, 0, 0, 0); let key_id3 = keychain::ExtKeychain::derive_key_id(1, 3, 0, 0, 0); let tx = build::transaction( vec![ input(7, key_id1), output(3, key_id2), output(3, key_id3), with_fee(1), ], &keychain, ) .unwrap(); // now we reconstruct the transaction, swapping the rangeproofs so they // have the wrong privkey let ins = tx.inputs(); let mut outs = tx.outputs().clone(); let kernels = tx.kernels(); outs[0].proof = outs[1].proof; let key_id = keychain::ExtKeychain::derive_key_id(1, 4, 0, 0, 0); let prev = BlockHeader::default(); let b = new_block( vec![&mut Transaction::new( ins.clone(), outs.clone(), kernels.clone(), )], &keychain, &prev, &key_id, ); // block should have been automatically compacted (including reward // output) and should still be valid match b.validate(&BlindingFactor::zero(), verifier_cache()) { Err(Error::Transaction(transaction::Error::Secp(secp::Error::InvalidRangeProof))) => {} _ => panic!("Bad range proof should be invalid"), } } // Swap a range proof with the right private key but wrong amount #[test] fn wrong_amount_range_proof() { let keychain = keychain::ExtKeychain::from_random_seed(false).unwrap(); let key_id1 = keychain::ExtKeychain::derive_key_id(1, 1, 0, 0, 0); let key_id2 = keychain::ExtKeychain::derive_key_id(1, 2, 0, 0, 0); let key_id3 = keychain::ExtKeychain::derive_key_id(1, 3, 0, 0, 0); let tx1 = build::transaction( vec![ input(7, key_id1.clone()), output(3, key_id2.clone()), output(3, key_id3.clone()), with_fee(1), ], &keychain, ) .unwrap(); let tx2 = build::transaction( vec![ input(7, key_id1), output(2, key_id2), output(4, key_id3), with_fee(1), ], &keychain, ) .unwrap(); // we take the range proofs from tx2 into tx1 and rebuild the transaction let ins = tx1.inputs(); let mut outs = tx1.outputs().clone(); let kernels = tx1.kernels(); outs[0].proof = tx2.outputs()[0].proof; outs[1].proof = tx2.outputs()[1].proof; let key_id = keychain::ExtKeychain::derive_key_id(1, 4, 0, 0, 0); let prev = BlockHeader::default(); let b = new_block( vec![&mut Transaction::new( ins.clone(), outs.clone(), kernels.clone(), )], &keychain, &prev, &key_id, ); // block should have been automatically compacted (including reward // output) and should still be valid match b.validate(&BlindingFactor::zero(), verifier_cache()) { Err(Error::Transaction(transaction::Error::Secp(secp::Error::InvalidRangeProof))) => {} _ => panic!("Bad range proof should be invalid"), } }