// Copyright 2018 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Rust Bitcoin Library // Written in 2014 by // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! Macros to support Rust BIP-32 code (though could conceivably be used for other things) #[macro_export] macro_rules! impl_array_newtype { ($thing:ident, $ty:ty, $len:expr) => { impl $thing { #[inline] /// Converts the object to a raw pointer pub fn as_ptr(&self) -> *const $ty { let &$thing(ref dat) = self; dat.as_ptr() } #[inline] /// Converts the object to a mutable raw pointer pub fn as_mut_ptr(&mut self) -> *mut $ty { let &mut $thing(ref mut dat) = self; dat.as_mut_ptr() } #[inline] /// Returns the length of the object as an array pub fn len(&self) -> usize { $len } #[inline] /// Returns whether the object, as an array, is empty. Always false. pub fn is_empty(&self) -> bool { false } #[inline] /// Returns the underlying bytes. pub fn as_bytes(&self) -> &[$ty; $len] { &self.0 } #[inline] /// Returns the underlying bytes. pub fn to_bytes(&self) -> [$ty; $len] { self.0.clone() } #[inline] /// Returns the underlying bytes. pub fn into_bytes(self) -> [$ty; $len] { self.0 } } impl<'a> From<&'a [$ty]> for $thing { fn from(data: &'a [$ty]) -> $thing { assert_eq!(data.len(), $len); let mut ret = [0; $len]; ret.copy_from_slice(&data[..]); $thing(ret) } } impl ::std::ops::Index for $thing { type Output = $ty; #[inline] fn index(&self, index: usize) -> &$ty { let &$thing(ref dat) = self; &dat[index] } } impl_index_newtype!($thing, $ty); impl PartialEq for $thing { #[inline] fn eq(&self, other: &$thing) -> bool { &self[..] == &other[..] } } impl Eq for $thing {} impl PartialOrd for $thing { #[inline] fn partial_cmp(&self, other: &$thing) -> Option<::std::cmp::Ordering> { Some(self.cmp(&other)) } } impl Ord for $thing { #[inline] fn cmp(&self, other: &$thing) -> ::std::cmp::Ordering { // manually implement comparison to get little-endian ordering // (we need this for our numeric types; non-numeric ones shouldn't // be ordered anyway except to put them in BTrees or whatever, and // they don't care how we order as long as we're consisistent). for i in 0..$len { if self[$len - 1 - i] < other[$len - 1 - i] { return ::std::cmp::Ordering::Less; } if self[$len - 1 - i] > other[$len - 1 - i] { return ::std::cmp::Ordering::Greater; } } ::std::cmp::Ordering::Equal } } #[cfg_attr(feature = "clippy", allow(expl_impl_clone_on_copy))] // we don't define the `struct`, we have to explicitly impl impl Clone for $thing { #[inline] fn clone(&self) -> $thing { $thing::from(&self[..]) } } impl Copy for $thing {} impl ::std::hash::Hash for $thing { #[inline] fn hash(&self, state: &mut H) where H: ::std::hash::Hasher { (&self[..]).hash(state); } fn hash_slice(data: &[$thing], state: &mut H) where H: ::std::hash::Hasher { for d in data.iter() { (&d[..]).hash(state); } } } impl ::rand::Rand for $thing { #[inline] fn rand(r: &mut R) -> $thing { $thing(::rand::Rand::rand(r)) } } } } #[macro_export] macro_rules! impl_array_newtype_encodable { ($thing:ident, $ty:ty, $len:expr) => { #[cfg(feature = "serde")] impl<'de> $crate::serde::Deserialize<'de> for $thing { fn deserialize(deserializer: D) -> Result where D: $crate::serde::Deserializer<'de>, { use $crate::std::fmt::{self, Formatter}; struct Visitor; impl<'de> $crate::serde::de::Visitor<'de> for Visitor { type Value = $thing; fn expecting(&self, formatter: &mut Formatter) -> fmt::Result { formatter.write_str("a fixed size array") } #[inline] fn visit_seq(self, mut seq: A) -> Result where A: $crate::serde::de::SeqAccess<'de>, { let mut ret: [$ty; $len] = [0; $len]; for item in ret.iter_mut() { *item = match seq.next_element()? { Some(c) => c, None => { return Err($crate::serde::de::Error::custom("end of stream")) } }; } Ok($thing(ret)) } } deserializer.deserialize_seq(Visitor) } } #[cfg(feature = "serde")] impl $crate::serde::Serialize for $thing { fn serialize(&self, serializer: S) -> Result where S: $crate::serde::Serializer, { let &$thing(ref dat) = self; (&dat[..]).serialize(serializer) } } }; } #[macro_export] macro_rules! impl_array_newtype_show { ($thing:ident) => { impl ::std::fmt::Debug for $thing { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { write!(f, concat!(stringify!($thing), "({:?})"), &self[..]) } } }; } #[macro_export] macro_rules! impl_index_newtype { ($thing:ident, $ty:ty) => { impl ::std::ops::Index<::std::ops::Range> for $thing { type Output = [$ty]; #[inline] fn index(&self, index: ::std::ops::Range) -> &[$ty] { &self.0[index] } } impl ::std::ops::Index<::std::ops::RangeTo> for $thing { type Output = [$ty]; #[inline] fn index(&self, index: ::std::ops::RangeTo) -> &[$ty] { &self.0[index] } } impl ::std::ops::Index<::std::ops::RangeFrom> for $thing { type Output = [$ty]; #[inline] fn index(&self, index: ::std::ops::RangeFrom) -> &[$ty] { &self.0[index] } } impl ::std::ops::Index<::std::ops::RangeFull> for $thing { type Output = [$ty]; #[inline] fn index(&self, _: ::std::ops::RangeFull) -> &[$ty] { &self.0[..] } } }; }