// Copyright 2020 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Rust Bitcoin Library // Written in 2014 by // Andrew Poelstra // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! Implementation of BIP32 hierarchical deterministic wallets, as defined //! at https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki //! Modified from above to integrate into grin and allow for different //! hashing algorithms if desired #[cfg(feature = "serde")] use serde; use std::default::Default; use std::io::Cursor; use std::str::FromStr; use std::{error, fmt}; use crate::mnemonic; use crate::util::secp::key::{PublicKey, SecretKey}; use crate::util::secp::{self, ContextFlag, Secp256k1}; use byteorder::{BigEndian, ByteOrder, ReadBytesExt}; use digest::generic_array::GenericArray; use digest::Digest; use hmac::{Hmac, Mac}; use ripemd160::Ripemd160; use sha2::{Sha256, Sha512}; use crate::base58; // Create alias for HMAC-SHA512 type HmacSha512 = Hmac; /// A chain code pub struct ChainCode([u8; 32]); impl_array_newtype!(ChainCode, u8, 32); impl_array_newtype_show!(ChainCode); impl_array_newtype_encodable!(ChainCode, u8, 32); /// A fingerprint pub struct Fingerprint([u8; 4]); impl_array_newtype!(Fingerprint, u8, 4); impl_array_newtype_show!(Fingerprint); impl_array_newtype_encodable!(Fingerprint, u8, 4); impl Default for Fingerprint { fn default() -> Fingerprint { Fingerprint([0, 0, 0, 0]) } } /// Allow different implementations of hash functions used in BIP32 Derivations /// Grin uses blake2 everywhere but the spec calls for SHA512/Ripemd160, so allow /// this in future and allow us to unit test against published BIP32 test vectors /// The function names refer to the place of the hash in the reference BIP32 spec, /// not what the actual implementation is pub trait BIP32Hasher { fn network_priv(&self) -> [u8; 4]; fn network_pub(&self) -> [u8; 4]; fn master_seed() -> [u8; 12]; fn init_sha512(&mut self, seed: &[u8]); fn append_sha512(&mut self, value: &[u8]); fn result_sha512(&mut self) -> [u8; 64]; fn sha_256(&self, input: &[u8]) -> [u8; 32]; fn ripemd_160(&self, input: &[u8]) -> [u8; 20]; } /// Implementation of the above that uses the standard BIP32 Hash algorithms #[derive(Clone, Debug)] pub struct BIP32GrinHasher { is_floo: bool, hmac_sha512: Hmac, } impl BIP32GrinHasher { /// New empty hasher pub fn new(is_floo: bool) -> BIP32GrinHasher { BIP32GrinHasher { is_floo: is_floo, hmac_sha512: HmacSha512::new(GenericArray::from_slice(&[0u8; 128])), } } } impl BIP32Hasher for BIP32GrinHasher { fn network_priv(&self) -> [u8; 4] { match self.is_floo { true => [0x03, 0x27, 0x3A, 0x10], // fprv false => [0x03, 0x3C, 0x04, 0xA4], // gprv } } fn network_pub(&self) -> [u8; 4] { match self.is_floo { true => [0x03, 0x27, 0x3E, 0x4B], // fpub false => [0x03, 0x3C, 0x08, 0xDF], // gpub } } fn master_seed() -> [u8; 12] { b"IamVoldemort".to_owned() } fn init_sha512(&mut self, seed: &[u8]) { self.hmac_sha512 = HmacSha512::new_varkey(seed).expect("HMAC can take key of any size"); } fn append_sha512(&mut self, value: &[u8]) { self.hmac_sha512.input(value); } fn result_sha512(&mut self) -> [u8; 64] { let mut result = [0; 64]; result.copy_from_slice(self.hmac_sha512.result().code().as_slice()); result } fn sha_256(&self, input: &[u8]) -> [u8; 32] { let mut sha2_res = [0; 32]; let mut sha2 = Sha256::new(); sha2.input(input); sha2_res.copy_from_slice(sha2.result().as_slice()); sha2_res } fn ripemd_160(&self, input: &[u8]) -> [u8; 20] { let mut ripemd_res = [0; 20]; let mut ripemd = Ripemd160::new(); ripemd.input(input); ripemd_res.copy_from_slice(ripemd.result().as_slice()); ripemd_res } } /// Extended private key #[derive(Clone, PartialEq, Eq, Debug)] pub struct ExtendedPrivKey { /// The network this key is to be used on pub network: [u8; 4], /// How many derivations this key is from the master (which is 0) pub depth: u8, /// Fingerprint of the parent key (0 for master) pub parent_fingerprint: Fingerprint, /// Child number of the key used to derive from parent (0 for master) pub child_number: ChildNumber, /// Secret key pub secret_key: SecretKey, /// Chain code pub chain_code: ChainCode, } /// Extended public key #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct ExtendedPubKey { /// The network this key is to be used on pub network: [u8; 4], /// How many derivations this key is from the master (which is 0) pub depth: u8, /// Fingerprint of the parent key pub parent_fingerprint: Fingerprint, /// Child number of the key used to derive from parent (0 for master) pub child_number: ChildNumber, /// Public key pub public_key: PublicKey, /// Chain code pub chain_code: ChainCode, } /// A child number for a derived key #[derive(Copy, Clone, PartialEq, Eq, Debug, Serialize, Deserialize)] pub enum ChildNumber { /// Non-hardened key Normal { /// Key index, within [0, 2^31 - 1] index: u32, }, /// Hardened key Hardened { /// Key index, within [0, 2^31 - 1] index: u32, }, } impl ChildNumber { /// Create a [`Normal`] from an index, panics if the index is not within /// [0, 2^31 - 1]. /// /// [`Normal`]: #variant.Normal pub fn from_normal_idx(index: u32) -> Self { assert_eq!( index & (1 << 31), 0, "ChildNumber indices have to be within [0, 2^31 - 1], is: {}", index ); ChildNumber::Normal { index: index } } /// Create a [`Hardened`] from an index, panics if the index is not within /// [0, 2^31 - 1]. /// /// [`Hardened`]: #variant.Hardened pub fn from_hardened_idx(index: u32) -> Self { assert_eq!( index & (1 << 31), 0, "ChildNumber indices have to be within [0, 2^31 - 1], is: {}", index ); ChildNumber::Hardened { index: index } } /// Returns `true` if the child number is a [`Normal`] value. /// /// [`Normal`]: #variant.Normal pub fn is_normal(&self) -> bool { !self.is_hardened() } /// Returns `true` if the child number is a [`Hardened`] value. /// /// [`Hardened`]: #variant.Hardened pub fn is_hardened(&self) -> bool { match *self { ChildNumber::Hardened { .. } => true, ChildNumber::Normal { .. } => false, } } } impl From for ChildNumber { fn from(number: u32) -> Self { if number & (1 << 31) != 0 { ChildNumber::Hardened { index: number ^ (1 << 31), } } else { ChildNumber::Normal { index: number } } } } impl From for u32 { fn from(cnum: ChildNumber) -> Self { match cnum { ChildNumber::Normal { index } => index, ChildNumber::Hardened { index } => index | (1 << 31), } } } impl fmt::Display for ChildNumber { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ChildNumber::Hardened { index } => write!(f, "{}'", index), ChildNumber::Normal { index } => write!(f, "{}", index), } } } #[cfg(feature = "serde")] impl<'de> serde::Deserialize<'de> for ChildNumber { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { u32::deserialize(deserializer).map(ChildNumber::from) } } #[cfg(feature = "serde")] impl serde::Serialize for ChildNumber { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { u32::from(*self).serialize(serializer) } } /// A BIP32 error #[derive(Clone, PartialEq, Eq, Debug, Serialize, Deserialize)] pub enum Error { /// A pk->pk derivation was attempted on a hardened key CannotDeriveFromHardenedKey, /// A secp256k1 error occured Ecdsa(secp::Error), /// A child number was provided that was out of range InvalidChildNumber(ChildNumber), /// Error creating a master seed --- for application use RngError(String), /// Error converting mnemonic to seed MnemonicError(mnemonic::Error), } impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { Error::CannotDeriveFromHardenedKey => { f.write_str("cannot derive hardened key from public key") } Error::Ecdsa(ref e) => fmt::Display::fmt(e, f), Error::InvalidChildNumber(ref n) => write!(f, "child number {} is invalid", n), Error::RngError(ref s) => write!(f, "rng error {}", s), Error::MnemonicError(ref e) => fmt::Display::fmt(e, f), } } } impl error::Error for Error { fn cause(&self) -> Option<&dyn error::Error> { if let Error::Ecdsa(ref e) = *self { Some(e) } else { None } } fn description(&self) -> &str { match *self { Error::CannotDeriveFromHardenedKey => "cannot derive hardened key from public key", Error::Ecdsa(ref e) => error::Error::description(e), Error::InvalidChildNumber(_) => "child number is invalid", Error::RngError(_) => "rng error", Error::MnemonicError(_) => "mnemonic error", } } } impl From for Error { fn from(e: secp::Error) -> Error { Error::Ecdsa(e) } } impl ExtendedPrivKey { /// Construct a new master key from a seed value pub fn new_master( secp: &Secp256k1, hasher: &mut H, seed: &[u8], ) -> Result where H: BIP32Hasher, { hasher.init_sha512(&H::master_seed()); hasher.append_sha512(seed); let result = hasher.result_sha512(); Ok(ExtendedPrivKey { network: hasher.network_priv(), depth: 0, parent_fingerprint: Default::default(), child_number: ChildNumber::from_normal_idx(0), secret_key: SecretKey::from_slice(secp, &result[..32]).map_err(Error::Ecdsa)?, chain_code: ChainCode::from(&result[32..]), }) } /// Construct a new master key from a mnemonic and a passphrase pub fn from_mnemonic( secp: &Secp256k1, mnemonic: &str, passphrase: &str, is_floo: bool, ) -> Result { let seed = match mnemonic::to_seed(mnemonic, passphrase) { Ok(s) => s, Err(e) => return Err(Error::MnemonicError(e)), }; let mut hasher = BIP32GrinHasher::new(is_floo); let key = ExtendedPrivKey::new_master(secp, &mut hasher, &seed)?; Ok(key) } /// Attempts to derive an extended private key from a path. pub fn derive_priv( &self, secp: &Secp256k1, hasher: &mut H, cnums: &[ChildNumber], ) -> Result where H: BIP32Hasher, { let mut sk: ExtendedPrivKey = self.clone(); for cnum in cnums { sk = sk.ckd_priv(secp, hasher, *cnum)?; } Ok(sk) } /// Private->Private child key derivation pub fn ckd_priv( &self, secp: &Secp256k1, hasher: &mut H, i: ChildNumber, ) -> Result where H: BIP32Hasher, { hasher.init_sha512(&self.chain_code[..]); let mut be_n = [0; 4]; match i { ChildNumber::Normal { .. } => { // Non-hardened key: compute public data and use that hasher.append_sha512( &PublicKey::from_secret_key(secp, &self.secret_key)?.serialize_vec(secp, true) [..], ); } ChildNumber::Hardened { .. } => { // Hardened key: use only secret data to prevent public derivation hasher.append_sha512(&[0u8]); hasher.append_sha512(&self.secret_key[..]); } } BigEndian::write_u32(&mut be_n, u32::from(i)); hasher.append_sha512(&be_n); let result = hasher.result_sha512(); let mut sk = SecretKey::from_slice(secp, &result[..32]).map_err(Error::Ecdsa)?; sk.add_assign(secp, &self.secret_key) .map_err(Error::Ecdsa)?; Ok(ExtendedPrivKey { network: self.network, depth: self.depth + 1, parent_fingerprint: self.fingerprint(hasher), child_number: i, secret_key: sk, chain_code: ChainCode::from(&result[32..]), }) } /// Returns the HASH160 of the chaincode pub fn identifier(&self, hasher: &mut H) -> [u8; 20] where H: BIP32Hasher, { let secp = Secp256k1::with_caps(ContextFlag::SignOnly); // Compute extended public key let pk: ExtendedPubKey = ExtendedPubKey::from_private::(&secp, self, hasher); // Do SHA256 of just the ECDSA pubkey let sha2_res = hasher.sha_256(&pk.public_key.serialize_vec(&secp, true)[..]); // do RIPEMD160 let ripemd_res = hasher.ripemd_160(&sha2_res); // Return ripemd_res } /// Returns the first four bytes of the identifier pub fn fingerprint(&self, hasher: &mut H) -> Fingerprint where H: BIP32Hasher, { Fingerprint::from(&self.identifier(hasher)[0..4]) } } impl ExtendedPubKey { /// Derives a public key from a private key pub fn from_private(secp: &Secp256k1, sk: &ExtendedPrivKey, hasher: &mut H) -> ExtendedPubKey where H: BIP32Hasher, { ExtendedPubKey { network: hasher.network_pub(), depth: sk.depth, parent_fingerprint: sk.parent_fingerprint, child_number: sk.child_number, public_key: PublicKey::from_secret_key(secp, &sk.secret_key).unwrap(), chain_code: sk.chain_code, } } /// Attempts to derive an extended public key from a path. pub fn derive_pub( &self, secp: &Secp256k1, hasher: &mut H, cnums: &[ChildNumber], ) -> Result where H: BIP32Hasher, { let mut pk: ExtendedPubKey = *self; for cnum in cnums { pk = pk.ckd_pub(secp, hasher, *cnum)? } Ok(pk) } /// Compute the scalar tweak added to this key to get a child key pub fn ckd_pub_tweak( &self, secp: &Secp256k1, hasher: &mut H, i: ChildNumber, ) -> Result<(SecretKey, ChainCode), Error> where H: BIP32Hasher, { match i { ChildNumber::Hardened { .. } => Err(Error::CannotDeriveFromHardenedKey), ChildNumber::Normal { index: n } => { hasher.init_sha512(&self.chain_code[..]); hasher.append_sha512(&self.public_key.serialize_vec(secp, true)[..]); let mut be_n = [0; 4]; BigEndian::write_u32(&mut be_n, n); hasher.append_sha512(&be_n); let result = hasher.result_sha512(); let secret_key = SecretKey::from_slice(secp, &result[..32])?; let chain_code = ChainCode::from(&result[32..]); Ok((secret_key, chain_code)) } } } /// Public->Public child key derivation pub fn ckd_pub( &self, secp: &Secp256k1, hasher: &mut H, i: ChildNumber, ) -> Result where H: BIP32Hasher, { let (sk, chain_code) = self.ckd_pub_tweak(secp, hasher, i)?; let mut pk = self.public_key.clone(); pk.add_exp_assign(secp, &sk).map_err(Error::Ecdsa)?; Ok(ExtendedPubKey { network: self.network, depth: self.depth + 1, parent_fingerprint: self.fingerprint(secp, hasher), child_number: i, public_key: pk, chain_code: chain_code, }) } /// Returns the HASH160 of the chaincode pub fn identifier(&self, secp: &Secp256k1, hasher: &mut H) -> [u8; 20] where H: BIP32Hasher, { // Do SHA256 of just the ECDSA pubkey let sha2_res = hasher.sha_256(&self.public_key.serialize_vec(secp, true)[..]); // do RIPEMD160 let ripemd_res = hasher.ripemd_160(&sha2_res); // Return ripemd_res } /// Returns the first four bytes of the identifier pub fn fingerprint(&self, secp: &Secp256k1, hasher: &mut H) -> Fingerprint where H: BIP32Hasher, { Fingerprint::from(&self.identifier(secp, hasher)[0..4]) } } impl fmt::Display for ExtendedPrivKey { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { let mut ret = [0; 78]; ret[0..4].copy_from_slice(&self.network[0..4]); ret[4] = self.depth as u8; ret[5..9].copy_from_slice(&self.parent_fingerprint[..]); BigEndian::write_u32(&mut ret[9..13], u32::from(self.child_number)); ret[13..45].copy_from_slice(&self.chain_code[..]); ret[45] = 0; ret[46..78].copy_from_slice(&self.secret_key[..]); fmt.write_str(&base58::check_encode_slice(&ret[..])) } } impl FromStr for ExtendedPrivKey { type Err = base58::Error; fn from_str(inp: &str) -> Result { let s = Secp256k1::without_caps(); let data = base58::from_check(inp)?; if data.len() != 78 { return Err(base58::Error::InvalidLength(data.len())); } let cn_int: u32 = Cursor::new(&data[9..13]).read_u32::().unwrap(); let child_number: ChildNumber = ChildNumber::from(cn_int); let mut network = [0; 4]; network.copy_from_slice(&data[0..4]); Ok(ExtendedPrivKey { network: network, depth: data[4], parent_fingerprint: Fingerprint::from(&data[5..9]), child_number: child_number, chain_code: ChainCode::from(&data[13..45]), secret_key: SecretKey::from_slice(&s, &data[46..78]) .map_err(|e| base58::Error::Other(e.to_string()))?, }) } } impl fmt::Display for ExtendedPubKey { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { let secp = Secp256k1::without_caps(); let mut ret = [0; 78]; ret[0..4].copy_from_slice(&self.network[0..4]); ret[4] = self.depth as u8; ret[5..9].copy_from_slice(&self.parent_fingerprint[..]); BigEndian::write_u32(&mut ret[9..13], u32::from(self.child_number)); ret[13..45].copy_from_slice(&self.chain_code[..]); ret[45..78].copy_from_slice(&self.public_key.serialize_vec(&secp, true)[..]); fmt.write_str(&base58::check_encode_slice(&ret[..])) } } impl FromStr for ExtendedPubKey { type Err = base58::Error; fn from_str(inp: &str) -> Result { let s = Secp256k1::without_caps(); let data = base58::from_check(inp)?; if data.len() != 78 { return Err(base58::Error::InvalidLength(data.len())); } let cn_int: u32 = Cursor::new(&data[9..13]).read_u32::().unwrap(); let child_number: ChildNumber = ChildNumber::from(cn_int); let mut network = [0; 4]; network.copy_from_slice(&data[0..4]); Ok(ExtendedPubKey { network: network, depth: data[4], parent_fingerprint: Fingerprint::from(&data[5..9]), child_number: child_number, chain_code: ChainCode::from(&data[13..45]), public_key: PublicKey::from_slice(&s, &data[45..78]) .map_err(|e| base58::Error::Other(e.to_string()))?, }) } } #[cfg(test)] mod tests { use std::str::FromStr; use std::string::ToString; use crate::util::from_hex; use crate::util::secp::Secp256k1; use super::*; use digest::generic_array::GenericArray; use digest::Digest; use hmac::{Hmac, Mac}; use ripemd160::Ripemd160; use sha2::{Sha256, Sha512}; /// Implementation of the above that uses the standard BIP32 Hash algorithms pub struct BIP32ReferenceHasher { hmac_sha512: Hmac, } impl BIP32ReferenceHasher { /// New empty hasher pub fn new() -> BIP32ReferenceHasher { BIP32ReferenceHasher { hmac_sha512: HmacSha512::new(GenericArray::from_slice(&[0u8; 128])), } } } impl BIP32Hasher for BIP32ReferenceHasher { fn network_priv(&self) -> [u8; 4] { // bitcoin network (xprv) (for test vectors) [0x04, 0x88, 0xAD, 0xE4] } fn network_pub(&self) -> [u8; 4] { // bitcoin network (xpub) (for test vectors) [0x04, 0x88, 0xB2, 0x1E] } fn master_seed() -> [u8; 12] { b"Bitcoin seed".to_owned() } fn init_sha512(&mut self, seed: &[u8]) { self.hmac_sha512 = HmacSha512::new_varkey(seed).expect("HMAC can take key of any size"); } fn append_sha512(&mut self, value: &[u8]) { self.hmac_sha512.input(value); } fn result_sha512(&mut self) -> [u8; 64] { let mut result = [0; 64]; result.copy_from_slice(self.hmac_sha512.result().code().as_slice()); result } fn sha_256(&self, input: &[u8]) -> [u8; 32] { let mut sha2_res = [0; 32]; let mut sha2 = Sha256::new(); sha2.input(input); sha2_res.copy_from_slice(sha2.result().as_slice()); sha2_res } fn ripemd_160(&self, input: &[u8]) -> [u8; 20] { let mut ripemd_res = [0; 20]; let mut ripemd = Ripemd160::new(); ripemd.input(input); ripemd_res.copy_from_slice(ripemd.result().as_slice()); ripemd_res } } fn test_path( secp: &Secp256k1, seed: &[u8], path: &[ChildNumber], expected_sk: &str, expected_pk: &str, ) { let mut h = BIP32ReferenceHasher::new(); let mut sk = ExtendedPrivKey::new_master(secp, &mut h, seed).unwrap(); let mut pk = ExtendedPubKey::from_private::(secp, &sk, &mut h); // Check derivation convenience method for ExtendedPrivKey assert_eq!( &sk.derive_priv(secp, &mut h, path).unwrap().to_string()[..], expected_sk ); // Check derivation convenience method for ExtendedPubKey, should error // appropriately if any ChildNumber is hardened if path.iter().any(|cnum| cnum.is_hardened()) { assert_eq!( pk.derive_pub(secp, &mut h, path), Err(Error::CannotDeriveFromHardenedKey) ); } else { assert_eq!( &pk.derive_pub(secp, &mut h, path).unwrap().to_string()[..], expected_pk ); } // Derive keys, checking hardened and non-hardened derivation one-by-one for &num in path.iter() { sk = sk.ckd_priv(secp, &mut h, num).unwrap(); match num { ChildNumber::Normal { .. } => { let pk2 = pk.ckd_pub(secp, &mut h, num).unwrap(); pk = ExtendedPubKey::from_private::(secp, &sk, &mut h); assert_eq!(pk, pk2); } ChildNumber::Hardened { .. } => { assert_eq!( pk.ckd_pub(secp, &mut h, num), Err(Error::CannotDeriveFromHardenedKey) ); pk = ExtendedPubKey::from_private::(secp, &sk, &mut h); } } } // Check result against expected base58 assert_eq!(&sk.to_string()[..], expected_sk); assert_eq!(&pk.to_string()[..], expected_pk); // Check decoded base58 against result let decoded_sk = ExtendedPrivKey::from_str(expected_sk); let decoded_pk = ExtendedPubKey::from_str(expected_pk); assert_eq!(Ok(sk), decoded_sk); assert_eq!(Ok(pk), decoded_pk); } #[test] fn test_vector_1() { let secp = Secp256k1::new(); let seed = from_hex("000102030405060708090a0b0c0d0e0f".to_owned()).unwrap(); // m test_path(&secp, &seed, &[], "xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi", "xpub661MyMwAqRbcFtXgS5sYJABqqG9YLmC4Q1Rdap9gSE8NqtwybGhePY2gZ29ESFjqJoCu1Rupje8YtGqsefD265TMg7usUDFdp6W1EGMcet8"); // m/0h test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0)], "xprv9uHRZZhk6KAJC1avXpDAp4MDc3sQKNxDiPvvkX8Br5ngLNv1TxvUxt4cV1rGL5hj6KCesnDYUhd7oWgT11eZG7XnxHrnYeSvkzY7d2bhkJ7", "xpub68Gmy5EdvgibQVfPdqkBBCHxA5htiqg55crXYuXoQRKfDBFA1WEjWgP6LHhwBZeNK1VTsfTFUHCdrfp1bgwQ9xv5ski8PX9rL2dZXvgGDnw"); // m/0h/1 test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0), ChildNumber::from_normal_idx(1)], "xprv9wTYmMFdV23N2TdNG573QoEsfRrWKQgWeibmLntzniatZvR9BmLnvSxqu53Kw1UmYPxLgboyZQaXwTCg8MSY3H2EU4pWcQDnRnrVA1xe8fs", "xpub6ASuArnXKPbfEwhqN6e3mwBcDTgzisQN1wXN9BJcM47sSikHjJf3UFHKkNAWbWMiGj7Wf5uMash7SyYq527Hqck2AxYysAA7xmALppuCkwQ"); // m/0h/1/2h test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2)], "xprv9z4pot5VBttmtdRTWfWQmoH1taj2axGVzFqSb8C9xaxKymcFzXBDptWmT7FwuEzG3ryjH4ktypQSAewRiNMjANTtpgP4mLTj34bhnZX7UiM", "xpub6D4BDPcP2GT577Vvch3R8wDkScZWzQzMMUm3PWbmWvVJrZwQY4VUNgqFJPMM3No2dFDFGTsxxpG5uJh7n7epu4trkrX7x7DogT5Uv6fcLW5"); // m/0h/1/2h/2 test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2), ChildNumber::from_normal_idx(2)], "xprvA2JDeKCSNNZky6uBCviVfJSKyQ1mDYahRjijr5idH2WwLsEd4Hsb2Tyh8RfQMuPh7f7RtyzTtdrbdqqsunu5Mm3wDvUAKRHSC34sJ7in334", "xpub6FHa3pjLCk84BayeJxFW2SP4XRrFd1JYnxeLeU8EqN3vDfZmbqBqaGJAyiLjTAwm6ZLRQUMv1ZACTj37sR62cfN7fe5JnJ7dh8zL4fiyLHV"); // m/0h/1/2h/2/1000000000 test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2), ChildNumber::from_normal_idx(2), ChildNumber::from_normal_idx(1000000000)], "xprvA41z7zogVVwxVSgdKUHDy1SKmdb533PjDz7J6N6mV6uS3ze1ai8FHa8kmHScGpWmj4WggLyQjgPie1rFSruoUihUZREPSL39UNdE3BBDu76", "xpub6H1LXWLaKsWFhvm6RVpEL9P4KfRZSW7abD2ttkWP3SSQvnyA8FSVqNTEcYFgJS2UaFcxupHiYkro49S8yGasTvXEYBVPamhGW6cFJodrTHy"); } #[test] fn test_vector_2() { let secp = Secp256k1::new(); let seed = from_hex("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542".to_owned()).unwrap(); // m test_path(&secp, &seed, &[], "xprv9s21ZrQH143K31xYSDQpPDxsXRTUcvj2iNHm5NUtrGiGG5e2DtALGdso3pGz6ssrdK4PFmM8NSpSBHNqPqm55Qn3LqFtT2emdEXVYsCzC2U", "xpub661MyMwAqRbcFW31YEwpkMuc5THy2PSt5bDMsktWQcFF8syAmRUapSCGu8ED9W6oDMSgv6Zz8idoc4a6mr8BDzTJY47LJhkJ8UB7WEGuduB"); // m/0 test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0)], "xprv9vHkqa6EV4sPZHYqZznhT2NPtPCjKuDKGY38FBWLvgaDx45zo9WQRUT3dKYnjwih2yJD9mkrocEZXo1ex8G81dwSM1fwqWpWkeS3v86pgKt", "xpub69H7F5d8KSRgmmdJg2KhpAK8SR3DjMwAdkxj3ZuxV27CprR9LgpeyGmXUbC6wb7ERfvrnKZjXoUmmDznezpbZb7ap6r1D3tgFxHmwMkQTPH"); // m/0/2147483647h test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0), ChildNumber::from_hardened_idx(2147483647)], "xprv9wSp6B7kry3Vj9m1zSnLvN3xH8RdsPP1Mh7fAaR7aRLcQMKTR2vidYEeEg2mUCTAwCd6vnxVrcjfy2kRgVsFawNzmjuHc2YmYRmagcEPdU9", "xpub6ASAVgeehLbnwdqV6UKMHVzgqAG8Gr6riv3Fxxpj8ksbH9ebxaEyBLZ85ySDhKiLDBrQSARLq1uNRts8RuJiHjaDMBU4Zn9h8LZNnBC5y4a"); // m/0/2147483647h/1 test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0), ChildNumber::from_hardened_idx(2147483647), ChildNumber::from_normal_idx(1)], "xprv9zFnWC6h2cLgpmSA46vutJzBcfJ8yaJGg8cX1e5StJh45BBciYTRXSd25UEPVuesF9yog62tGAQtHjXajPPdbRCHuWS6T8XA2ECKADdw4Ef", "xpub6DF8uhdarytz3FWdA8TvFSvvAh8dP3283MY7p2V4SeE2wyWmG5mg5EwVvmdMVCQcoNJxGoWaU9DCWh89LojfZ537wTfunKau47EL2dhHKon"); // m/0/2147483647h/1/2147483646h test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0), ChildNumber::from_hardened_idx(2147483647), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2147483646)], "xprvA1RpRA33e1JQ7ifknakTFpgNXPmW2YvmhqLQYMmrj4xJXXWYpDPS3xz7iAxn8L39njGVyuoseXzU6rcxFLJ8HFsTjSyQbLYnMpCqE2VbFWc", "xpub6ERApfZwUNrhLCkDtcHTcxd75RbzS1ed54G1LkBUHQVHQKqhMkhgbmJbZRkrgZw4koxb5JaHWkY4ALHY2grBGRjaDMzQLcgJvLJuZZvRcEL"); // m/0/2147483647h/1/2147483646h/2 test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0), ChildNumber::from_hardened_idx(2147483647), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2147483646), ChildNumber::from_normal_idx(2)], "xprvA2nrNbFZABcdryreWet9Ea4LvTJcGsqrMzxHx98MMrotbir7yrKCEXw7nadnHM8Dq38EGfSh6dqA9QWTyefMLEcBYJUuekgW4BYPJcr9E7j", "xpub6FnCn6nSzZAw5Tw7cgR9bi15UV96gLZhjDstkXXxvCLsUXBGXPdSnLFbdpq8p9HmGsApME5hQTZ3emM2rnY5agb9rXpVGyy3bdW6EEgAtqt"); } #[test] fn test_vector_3() { let secp = Secp256k1::new(); let seed = from_hex("4b381541583be4423346c643850da4b320e46a87ae3d2a4e6da11eba819cd4acba45d239319ac14f863b8d5ab5a0d0c64d2e8a1e7d1457df2e5a3c51c73235be".to_owned()).unwrap(); // m test_path(&secp, &seed, &[], "xprv9s21ZrQH143K25QhxbucbDDuQ4naNntJRi4KUfWT7xo4EKsHt2QJDu7KXp1A3u7Bi1j8ph3EGsZ9Xvz9dGuVrtHHs7pXeTzjuxBrCmmhgC6", "xpub661MyMwAqRbcEZVB4dScxMAdx6d4nFc9nvyvH3v4gJL378CSRZiYmhRoP7mBy6gSPSCYk6SzXPTf3ND1cZAceL7SfJ1Z3GC8vBgp2epUt13"); // m/0h test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0)], "xprv9uPDJpEQgRQfDcW7BkF7eTya6RPxXeJCqCJGHuCJ4GiRVLzkTXBAJMu2qaMWPrS7AANYqdq6vcBcBUdJCVVFceUvJFjaPdGZ2y9WACViL4L", "xpub68NZiKmJWnxxS6aaHmn81bvJeTESw724CRDs6HbuccFQN9Ku14VQrADWgqbhhTHBaohPX4CjNLf9fq9MYo6oDaPPLPxSb7gwQN3ih19Zm4Y"); } #[test] #[cfg(all(feature = "serde", feature = "strason"))] pub fn encode_decode_childnumber() { serde_round_trip!(ChildNumber::from_normal_idx(0)); serde_round_trip!(ChildNumber::from_normal_idx(1)); serde_round_trip!(ChildNumber::from_normal_idx((1 << 31) - 1)); serde_round_trip!(ChildNumber::from_hardened_idx(0)); serde_round_trip!(ChildNumber::from_hardened_idx(1)); serde_round_trip!(ChildNumber::from_hardened_idx((1 << 31) - 1)); } }